Skip to main content

Advertisement

Log in

Metformin synergizes 5-fluorouracil, epirubicin, and cyclophosphamide (FEC) combination therapy through impairing intracellular ATP production and DNA repair in breast cancer stem cells

  • Original Paper
  • Published:
Apoptosis Aims and scope Submit manuscript

Abstract

Metformin, an AMPK activator, has been reported to improve pathological response to chemotherapy in diabetic breast cancer patients. To date, its mechanism of action in cancer, especially in cancer stem cells (CSCs) have not been fully elucidated. In this study, we demonstrated that metformin, but not other AMPK activators (e.g. AICAR and A-769662), synergizes 5-fluouracil, epirubicin, and cyclophosphamide (FEC) combination chemotherapy in non-stem breast cancer cells and breast cancer stem cells. We show that this occurs through an AMPK-dependent mechanism in parental breast cancer cell lines. In contrast, the synergistic effects of metformin and FEC occurred in an AMPK-independent mechanism in breast CSCs. Further analyses revealed that metformin accelerated glucose consumption and lactate production more severely in the breast CSCs but the production of intracellular ATP was severely hampered, leading to a severe energy crisis and impairs the ability of CSCs to repair FEC-induced DNA damage. Indeed, addition of extracellular ATP completely abrogated the synergistic effects of metformin on FEC sensitivity in breast CSCs. In conclusion, our results suggest that metformin synergizes FEC sensitivity through distinct mechanism in parental breast cancer cell lines and CSCs, thus providing further evidence for the clinical relevance of metformin for the treatment of cancers.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Jemal A, Bray F, Center MM, Ferlay J, Ward E, Forman D (2011) Global cancer statistics. CA Cancer J Clin 61(2):69–90. doi:10.3322/caac.20107

    Article  PubMed  Google Scholar 

  2. Kakarala M, Wicha MS (2008) Implications of the cancer stem-cell hypothesis for breast cancer prevention and therapy. J Clin Oncol 26(17):2813–2820. doi:10.1200/JCO.2008.16.3931

    Article  PubMed Central  PubMed  Google Scholar 

  3. Dean M, Fojo T, Bates S (2005) Tumour stem cells and drug resistance. Nat Rev Cancer 5(4):275–284. doi:10.1038/nrc1590

    Article  CAS  PubMed  Google Scholar 

  4. Rosen JM, Jordan CT (2009) The increasing complexity of the cancer stem cell paradigm. Science 324(5935):1670–1673. doi:10.1126/science.1171837

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  5. Creighton CJ, Li X, Landis M, Dixon JM, Neumeister VM, Sjolund A et al (2009) Residual breast cancers after conventional therapy display mesenchymal as well as tumor-initiating features. Proc Natl Acad Sci USA 106(33):13820–13825. doi:10.1073/pnas.0905718106

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  6. Li X, Lewis MT, Huang J, Gutierrez C, Osborne CK, Wu MF et al (2008) Intrinsic resistance of tumorigenic breast cancer cells to chemotherapy. J Natl Cancer Inst 100(9):672–679. doi:10.1093/jnci/djn123

    Article  CAS  PubMed  Google Scholar 

  7. Del Barco S, Vazquez-Martin A, Cufi S, Oliveras-Ferraros C, Bosch-Barrera J, Joven J et al (2011) Metformin: multi-faceted protection against cancer. Oncotarget 2(12):896–917

    PubMed Central  PubMed  Google Scholar 

  8. Hirsch HA, Iliopoulos D, Tsichlis PN, Struhl K (2009) Metformin selectively targets cancer stem cells, and acts together with chemotherapy to block tumor growth and prolong remission. Cancer Res 69(19):7507–7511. doi:10.1158/0008-5472.CAN-09-2994

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  9. Hirsch HA, Iliopoulos D, Struhl K (2013) Metformin inhibits the inflammatory response associated with cellular transformation and cancer stem cell growth. Proc Natl Acad Sci USA 110(3):972–977. doi:10.1073/pnas.1221055110

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  10. Iliopoulos D, Hirsch HA, Struhl K (2011) Metformin decreases the dose of chemotherapy for prolonging tumor remission in mouse xenografts involving multiple cancer cell types. Cancer Res 71(9):3196–3201. doi:10.1158/0008-5472.CAN-10-3471

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  11. Decensi A, Puntoni M, Goodwin P, Cazzaniga M, Gennari A, Bonanni B et al (2010) Metformin and cancer risk in diabetic patients: a systematic review and meta-analysis. Cancer Prev Res (Phila) 3(11):1451–1461. doi:10.1158/1940-6207.CAPR-10-0157

    Article  CAS  Google Scholar 

  12. Rattan R, Giri S, Hartmann LC, Shridhar V (2011) Metformin attenuates ovarian cancer cell growth in an AMP-kinase dispensable manner. J Cell Mol Med 15(1):166–178. doi:10.1111/j.1582-4934.2009.00954.x

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  13. Godsland IF (2010) Insulin resistance and hyperinsulinaemia in the development and progression of cancer. Clin Sci 118(5):315–332. doi:10.1042/CS20090399

    Article  CAS  Google Scholar 

  14. Jiralerspong S, Palla SL, Giordano SH, Meric-Bernstam F, Liedtke C, Barnett CM et al (2009) Metformin and pathologic complete responses to neoadjuvant chemotherapy in diabetic patients with breast cancer. J Clin Oncol 27(20):3297–3302. doi:10.1200/JCO.2009.19.6410

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  15. Dontu G, Abdallah WM, Foley JM, Jackson KW, Clarke MF, Kawamura MJ et al (2003) In vitro propagation and transcriptional profiling of human mammary stem/progenitor cells. Genes Dev 17(10):1253–1270. doi:10.1101/gad.1061803

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  16. Lim LY, Vidnovic N, Ellisen LW, Leong CO (2009) Mutant p53 mediates survival of breast cancer cells. Br J Cancer 101(9):1606–1612. doi:10.1038/sj.bjc.6605335

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  17. Leong CO, Vidnovic N, DeYoung MP, Sgroi D, Ellisen LW (2007) The p63/p73 network mediates chemosensitivity to cisplatin in a biologically defined subset of primary breast cancers. J Clin Invest 117(5):1370–1380. doi:10.1172/JCI30866

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  18. Greco WR, Bravo G, Parsons JC (1995) The search for synergy: a critical review from a response surface perspective. Pharmacol Rev 47(2):331–385

    CAS  PubMed  Google Scholar 

  19. Keith CT, Borisy AA, Stockwell BR (2005) Multicomponent therapeutics for networked systems. Nat Rev Drug Discov 4(1):71–78. doi:10.1038/nrd1609

    Article  CAS  PubMed  Google Scholar 

  20. Prichard MN, Shipman C Jr (1990) A three-dimensional model to analyze drug-drug interactions. Antiviral Res 14(4–5):181–205

    Article  CAS  PubMed  Google Scholar 

  21. Tan BS, Tiong KH, Muruhadas A, Randhawa N, Choo HL, Bradshaw TD et al (2011) CYP2S1 and CYP2W1 Mediate 2-(3,4-dimethoxyphenyl)-5-fluorobenzothiazole (GW-610, NSC 721648) sensitivity in breast and colorectal cancer cells. Mol Cancer Ther 10(10):1982–1992. doi:10.1158/1535-7163.MCT-11-0391

    Article  CAS  PubMed  Google Scholar 

  22. Bradshaw TD, Stone EL, Trapani V, Leong CO, Matthews CS, te Poele R et al (2008) Mechanisms of acquired resistance to 2-(4-Amino-3-methylphenyl)benzothiazole in breast cancer cell lines. Breast Cancer Res Treat 110(1):57–68. doi:10.1007/s10549-007-9690-9

    Article  CAS  PubMed  Google Scholar 

  23. Sancak Y, Peterson TR, Shaul YD, Lindquist RA, Thoreen CC, Bar-Peled L et al (2008) The Rag GTPases bind raptor and mediate amino acid signaling to mTORC1. Science 320(5882):1496–1501. doi:10.1126/science.1157535

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  24. Tan BS, Kang O, Mai CW, Tiong KH, Khoo AS, Pichika MR et al (2013) 6-Shogaol inhibits breast and colon cancer cell proliferation through activation of peroxisomal proliferator activated receptor gamma (PPARgamma). Cancer Lett 336(1):127–139. doi:10.1016/j.canlet.2013.04.014

    Article  CAS  PubMed  Google Scholar 

  25. Low SY, Tan BS, Choo HL, Tiong KH, Khoo AS, Leong CO (2012) Suppression of BCL-2 synergizes cisplatin sensitivity in nasopharyngeal carcinoma cells. Cancer Lett 314(2):166–175. doi:10.1016/j.canlet.2011.09.025

    Article  CAS  PubMed  Google Scholar 

  26. Liu PP, Liao J, Tang ZJ, Wu WJ, Yang J, Zeng ZL et al (2014) Metabolic regulation of cancer cell side population by glucose through activation of the Akt pathway. Cell Death Differ 21(1):124–135. doi:10.1038/cdd.2013.131

    Article  PubMed Central  PubMed  Google Scholar 

  27. Leong CO, Suggitt M, Swaine DJ, Bibby MC, Stevens MF, Bradshaw TD (2004) In vitro, in vivo, and in silico analyses of the antitumor activity of 2-(4-amino-3-methylphenyl)-5-fluorobenzothiazoles. Mol Cancer Ther 3(12):1565–1575

    CAS  PubMed  Google Scholar 

  28. Konca K, Lankoff A, Banasik A, Lisowska H, Kuszewski T, Gozdz S et al (2003) A cross-platform public domain PC image-analysis program for the comet assay. Mutat Res 534(1–2):15–20

    Article  CAS  PubMed  Google Scholar 

  29. Lokody I (2013) Gene regulation: chromatin editing reveals enhancer targets. Nat Rev Genet 14(11):749. doi:10.1038/nrg3601

    Article  CAS  PubMed  Google Scholar 

  30. O’Brien CS, Howell SJ, Farnie G, Clarke RB (2009) Resistance to endocrine therapy: are breast cancer stem cells the culprits? J Mammary Gland Biol Neoplasia 14(1):45–54. doi:10.1007/s10911-009-9115-y

    Article  PubMed  Google Scholar 

  31. Rocha GZ, Dias MM, Ropelle ER, Osorio-Costa F, Rossato FA, Vercesi AE et al (2011) Metformin amplifies chemotherapy-induced AMPK activation and antitumoral growth. Clin Cancer Res 17(12):3993–4005. doi:10.1158/1078-0432.CCR-10-2243

    Article  CAS  PubMed  Google Scholar 

  32. Zhou G, Myers R, Li Y, Chen Y, Shen X, Fenyk-Melody J et al (2001) Role of AMP-activated protein kinase in mechanism of metformin action. J Clin Invest 108(8):1167–1174. doi:10.1172/JCI13505

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  33. Ben Sahra I, Laurent K, Loubat A, Giorgetti-Peraldi S, Colosetti P, Auberger P et al (2008) The antidiabetic drug metformin exerts an antitumoral effect in vitro and in vivo through a decrease of cyclin D1 level. Oncogene 27(25):3576–3586. doi:10.1038/sj.onc.1211024

    Article  CAS  PubMed  Google Scholar 

  34. Foretz M, Hebrard S, Leclerc J, Zarrinpashneh E, Soty M, Mithieux G et al (2010) Metformin inhibits hepatic gluconeogenesis in mice independently of the LKB1/AMPK pathway via a decrease in hepatic energy state. J Clin Invest 120(7):2355–2369. doi:10.1172/JCI40671

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  35. Kalender A, Selvaraj A, Kim SY, Gulati P, Brule S, Viollet B et al (2010) Metformin, independent of AMPK, inhibits mTORC1 in a rag GTPase-dependent manner. Cell Metab 11(5):390–401. doi:10.1016/j.cmet.2010.03.014

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  36. Ben Sahra I, Regazzetti C, Robert G, Laurent K, Le Marchand-Brustel Y, Auberger P et al (2011) Metformin, independent of AMPK, induces mTOR inhibition and cell-cycle arrest through REDD1. Cancer Res 71(13):4366–4372. doi:10.1158/0008-5472.CAN-10-1769

    Article  CAS  PubMed  Google Scholar 

  37. El-Mir MY, Nogueira V, Fontaine E, Averet N, Rigoulet M, Leverve X (2000) Dimethylbiguanide inhibits cell respiration via an indirect effect targeted on the respiratory chain complex I. J Biol Chem 275(1):223–228

    Article  CAS  PubMed  Google Scholar 

  38. Owen MR, Doran E, Halestrap AP (2000) Evidence that metformin exerts its anti-diabetic effects through inhibition of complex 1 of the mitochondrial respiratory chain. Biochem J 348(Pt 3):607–614

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  39. Shaw RJ, Lamia KA, Vasquez D, Koo SH, Bardeesy N, Depinho RA et al (2005) The kinase LKB1 mediates glucose homeostasis in liver and therapeutic effects of metformin. Science 310(5754):1642–1646. doi:10.1126/science.1120781

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  40. Fu D, Calvo JA, Samson LD (2012) Balancing repair and tolerance of DNA damage caused by alkylating agents. Nat Rev Cancer 12(2):104–120. doi:10.1038/nrc3185

    PubMed Central  CAS  PubMed  Google Scholar 

  41. Pearl LH, Schierz AC, Ward SE, Al-Lazikani B, Pearl FM (2015) Therapeutic opportunities within the DNA damage response. Nat Rev Cancer 15(3):166–180. doi:10.1038/nrc3891

    Article  CAS  PubMed  Google Scholar 

  42. Huang J, Liang B, Qiu J, Laurent BC (2005) ATP-dependent chromatin-remodeling complexes in DNA double-strand break repair: remodeling, pairing and (re)pairing. Cell Cycle 4(12):1713–1715

    Article  CAS  PubMed  Google Scholar 

  43. van Attikum H, Gasser SM (2005) ATP-dependent chromatin remodeling and DNA double-strand break repair. Cell Cycle 4(8):1011–1014

    Article  PubMed  Google Scholar 

  44. van Attikum H, Fritsch O, Hohn B, Gasser SM (2004) Recruitment of the INO80 complex by H2A phosphorylation links ATP-dependent chromatin remodeling with DNA double-strand break repair. Cell 119(6):777–788. doi:10.1016/j.cell.2004.11.033

    Article  PubMed  Google Scholar 

  45. Dowling RJ, Niraula S, Stambolic V, Goodwin PJ (2012) Metformin in cancer: translational challenges. J Mol Endocrinol 48(3):R31–R43. doi:10.1530/JME-12-0007

    Article  CAS  PubMed  Google Scholar 

  46. Rosilio C, Lounnas N, Nebout M, Imbert V, Hagenbeek T, Spits H et al (2013) The metabolic perturbators metformin, phenformin and AICAR interfere with the growth and survival of murine PTEN-deficient T cell lymphomas and human T-ALL/T-LL cancer cells. Cancer Lett 336(1):114–126. doi:10.1016/j.canlet.2013.04.015

    Article  CAS  PubMed  Google Scholar 

  47. Bost F, Sahra IB, Le Marchand-Brustel Y, Tanti JF (2012) Metformin and cancer therapy. Curr Opin Oncol 24(1):103–108. doi:10.1097/CCO.0b013e32834d8155

    Article  CAS  PubMed  Google Scholar 

  48. Ben Sahra I, Le Marchand-Brustel Y, Tanti JF, Bost F (2010) Metformin in cancer therapy: a new perspective for an old antidiabetic drug? Mol Cancer Ther 9(5):1092–1099. doi:10.1158/1535-7163.MCT-09-1186

    Article  CAS  PubMed  Google Scholar 

  49. Ben Sahra I, Laurent K, Giuliano S, Larbret F, Ponzio G, Gounon P et al (2010) Targeting cancer cell metabolism: the combination of metformin and 2-deoxyglucose induces p53-dependent apoptosis in prostate cancer cells. Cancer Res 70(6):2465–2475. doi:10.1158/0008-5472.CAN-09-2782

    Article  CAS  PubMed  Google Scholar 

  50. Alimova IN, Liu B, Fan Z, Edgerton SM, Dillon T, Lind SE et al (2009) Metformin inhibits breast cancer cell growth, colony formation and induces cell cycle arrest in vitro. Cell Cycle 8(6):909–915

    Article  CAS  PubMed  Google Scholar 

  51. Dowling RJ, Zakikhani M, Fantus IG, Pollak M, Sonenberg N (2007) Metformin inhibits mammalian target of rapamycin-dependent translation initiation in breast cancer cells. Cancer Res 67(22):10804–10812. doi:10.1158/0008-5472.CAN-07-2310

    Article  CAS  PubMed  Google Scholar 

  52. Zakikhani M, Dowling R, Fantus IG, Sonenberg N, Pollak M (2006) Metformin is an AMP kinase-dependent growth inhibitor for breast cancer cells. Cancer Res 66(21):10269–10273. doi:10.1158/0008-5472.CAN-06-1500

    Article  CAS  PubMed  Google Scholar 

  53. Shackelford DB, Shaw RJ (2009) The LKB1-AMPK pathway: metabolism and growth control in tumour suppression. Nat Rev Cancer 9(8):563–575. doi:10.1038/nrc2676

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  54. Gonzalez-Angulo AM, Meric-Bernstam F (2010) Metformin: a therapeutic opportunity in breast cancer. Clin Cancer Res 16(6):1695–1700. doi:10.1158/1078-0432.CCR-09-1805

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  55. Vazquez-Martin A, Oliveras-Ferraros C, Menendez JA (2009) The antidiabetic drug metformin suppresses HER2 (erbB-2) oncoprotein overexpression via inhibition of the mTOR effector p70S6K1 in human breast carcinoma cells. Cell Cycle 8(1):88–96

    Article  CAS  PubMed  Google Scholar 

  56. Yuan S, Wang F, Chen G, Zhang H, Feng L, Wang L et al (2013) Effective elimination of cancer stem cells by a novel drug combination strategy. Stem Cells 31(1):23–34. doi:10.1002/stem.1273

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  57. Gammon L, Biddle A, Heywood HK, Johannessen AC, Mackenzie IC (2013) Sub-sets of cancer stem cells differ intrinsically in their patterns of oxygen metabolism. PLoS One 8(4):e62493. doi:10.1371/journal.pone.0062493

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  58. Bosco JL, Antonsen S, Sorensen HT, Pedersen L, Lash TL (2011) Metformin and incident breast cancer among diabetic women: a population-based case-control study in Denmark. Cancer Epidemiol Biomark Prev 20(1):101–111. doi:10.1158/1055-9965.EPI-10-0817

    Article  CAS  Google Scholar 

  59. Kim HJ, Kwon H, Lee JW, Lee SB, Park HS, Sohn G et al (2015) Metformin increases survival in hormone receptor-positive, Her2-positive breast cancer patients with diabetes. Breast Cancer Res 17(1):64. doi:10.1186/s13058-015-0574-3

    Article  PubMed Central  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by the funds raised through the Yayasan Sime Darby LPGA Tournament, donors of Cancer Research Initiatives Foundation and the Ministry of Higher Education Grant [UM.C/HIR/MOHE/06 and ERGS/1/2013/SKK01/IMU/02/1].

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Soo-Hwang Teo or Chee-Onn Leong.

Ethics declarations

Conflict of interest

The authors report no conflicts of interest pertaining to this study.

Research involving human participants and/or animals

No human participants and/or animals was involved in this study.

Informed consent

No informed consent was required for this study.

Additional information

Jaslyn Sian-Siu Soo and Char-Hong Ng are joint first authors and shared equal contribution.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Soo, J.SS., Ng, CH., Tan, S.H. et al. Metformin synergizes 5-fluorouracil, epirubicin, and cyclophosphamide (FEC) combination therapy through impairing intracellular ATP production and DNA repair in breast cancer stem cells. Apoptosis 20, 1373–1387 (2015). https://doi.org/10.1007/s10495-015-1158-5

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10495-015-1158-5

Keywords

Navigation