Skip to main content

Advertisement

Log in

LYG-202 exerts antitumor effect on PI3K/Akt signaling pathway in human breast cancer cells

  • Original Paper
  • Published:
Apoptosis Aims and scope Submit manuscript

Abstract

In this study, we aimed to investigate the antitumor effect of LYG-202, a newly synthesized piperazine-substituted derivative of flavonoid on human breast cancer cells and illustrate the potential mechanisms. LYG-202 induced apoptosis in MCF-7, MDA-MB-231 and MDA-MB-435 cells. LYG-202 triggered the activation of mitochondrial apoptotic pathway through multiple steps: increasing Bax/Bcl-2 ratio, decreasing mitochondrial membrane potential (ΔΨ m ), activating caspase-9 and caspase-3, inducing cleavage of poly(ADP-ribose) polymerase, cytochrome c release and apoptosis-inducing factor translocation. Furthermore, LYG-202 inhibited cell cycle progression at the G1/S transition via targeting Cyclin D, CDK4 and p21Waf1/Cip1. Additionally, LYG-202 increased the generation of intracellular ROS. N-Acetyl cysteine, an antioxidant, reversed LYG-202-induced apoptosis suggesting that LYG-202 induces apoptosis by accelerating ROS generation. Further, we found that LYG-202 deactivated the PI3K/Akt pathway, activated Bad phosphorylation, increased Cyclin D and Bcl-xL expression, and inhibited NF-κB nuclear translocation. Activation of PI3K/Akt pathway by IGF-1 attenuated LYG-202-induced apoptosis and cell cycle arrest. Our in vivo study showed that LYG-202 exhibited a potential antitumor effect in nude mice inoculated with MCF-7 tumor through similar mechanisms identified in cultured cells. In summary, our results demonstrated that LYG-202 induced apoptosis and cell cycle arrest via targeting PI3K/Akt pathway, indicating that LYG-202 is a potential anticancer agent for breast cancer.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Abbreviations

ROS:

Reactive oxygen species

DAPI:

4′,6-Diamidino-2-phenylindole

DMSO:

Dimethylsulfoxide

MTT:

3-(4,5-Dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide

PBS:

Phosphate buffered saline

PI:

Propidium iodide

PARP:

Poly(ADP-ribose) polymerase

AIF:

Apoptosis-inducing factor

CDK:

Cyclin-dependent kinase

NAC:

N-Acetyl cysteine

IGF-1:

Insulin-like growth factor-1

References

  1. Luo M, Guan JL (2010) Focal adhesion kinase: a prominent determinant in breast cancer initiation, progression and metastasis. Cancer Lett 289:127–139

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  2. Lin CC, Kuo CL, Lee MH et al (2011) Wogonin triggers apoptosis in human osteosarcoma U-2 OS cells through the endoplasmic reticulum stress, mitochondrial dysfunction and caspase-3-dependent signaling pathways. Int J Oncol 39:217–224

    CAS  PubMed  Google Scholar 

  3. Crompton M, Virji S, Doyle V, Johnson N, Ward JM (1999) The mitochondrial permeability transition pore. Biochem Soc Symp 66:167–179

    CAS  PubMed  Google Scholar 

  4. Fleury C, Mignotte B, Vayssiere JL (2002) Mitochondrial reactive oxygen species in cell death signaling. Biochimie 84:131–141

    Article  CAS  PubMed  Google Scholar 

  5. Thannickal VJ, Fanburg BL (2000) Reactive oxygen species in cell signaling. Am J Physiol Lung Cell Mol Physiol 279:L1005–L1028

    CAS  PubMed  Google Scholar 

  6. Cory S, Huang DC, Adams JM (2003) The Bcl-2 family: roles in cell survival and oncogenesis. Oncogene 22:8590–8607

    Article  CAS  PubMed  Google Scholar 

  7. Johansson M, Persson JL (2008) Cancer therapy: targeting cell cycle regulators. Anti-Cancer Agents Med Chem 8:723–731

    Article  CAS  Google Scholar 

  8. Boonstra J, Post JA (2004) Molecular events associated with reactive oxygen species and cell cycle progression in mammalian cells. Gene 337:1–13

    Article  CAS  PubMed  Google Scholar 

  9. Sheppard K, Kinross KM, Solomon B, Pearson RB, Phillips WA (2012) Targeting PI3 kinase/AKT/mTOR signaling in cancer. Crit Rev Oncol 17:69–95

    Article  Google Scholar 

  10. Vivanco I, Sawyers CL (2002) The phosphatidylinositol 3-kinase AKT pathway in human cancer. Nat Rev Cancer 2:489–501

    Article  CAS  PubMed  Google Scholar 

  11. Yang E, Zha J, Jockel J, Boise LH, Thompson CB, Korsmeyer SJ (1995) Bad, a heterodimeric partner for Bcl-XL and Bcl-2, displaces Bax and promotes cell death. Cell 80:285–291

    Article  CAS  PubMed  Google Scholar 

  12. Datta SR, Dudek H, Tao X et al (1997) Akt phosphorylation of BAD couples survival signals to the cell-intrinsic death machinery. Cell 91:231–241

    Article  CAS  PubMed  Google Scholar 

  13. Datta SR, Katsov A, Hu L et al (2000) 14-3-3 proteins and survival kinases cooperate to inactivate BAD by BH3 domain phosphorylation. Mol Cell 6:41–51

    Article  CAS  PubMed  Google Scholar 

  14. Ozes ON, Mayo LD, Gustin JA, Pfeffer SR, Pfeffer LM, Donner DB (1999) NF-kappaB activation by tumour necrosis factor requires the Akt serine-threonine kinase. Nature 401:82–85

    Article  CAS  PubMed  Google Scholar 

  15. Romashkova JA, Makarov SS (1999) NF-kappaB is a target of AKT in anti-apoptotic PDGF signalling. Nature 401:86–90

    Article  CAS  PubMed  Google Scholar 

  16. Karin M (2006) Nuclear factor-kappaB in cancer development and progression. Nature 441:431–436

    Article  CAS  PubMed  Google Scholar 

  17. Karin M, Greten FR (2005) NF-kappaB: linking inflammation and immunity to cancer development and progression. Nat Rev Immunol 5:749–759

    Article  CAS  PubMed  Google Scholar 

  18. Yang L, Wang Q, Li D et al (2013) Wogonin enhances antitumor activity of tumor necrosis factor-related apoptosis-inducing ligand in vivo through ROS-mediated downregulation of cFLIPL and IAP proteins. Apoptosis 18:618–626

    Article  CAS  PubMed  Google Scholar 

  19. Lucas CD, Allen KC, Dorward DA et al (2013) Flavones induce neutrophil apoptosis by down-regulation of Mcl-1 via a proteasomal-dependent pathway. FASEB J 27:1084–1094

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  20. Zeng S, Liu W, Nie FF et al (2009) LYG-202, a new flavonoid with a piperazine substitution, shows antitumor effects in vivo and in vitro. Biochem Biophys Res Commun 385:551–556

    Article  CAS  PubMed  Google Scholar 

  21. Liu W, Dai Q, Lu N et al (2011) LYG-202 inhibits the proliferation of human colorectal carcinoma HCT-116 cells through induction of G1/S cell cycle arrest and apoptosis via p53 and p21(WAF1/Cip1) expression. Biochem Cell Biol 89:287–298

    Article  CAS  PubMed  Google Scholar 

  22. Tao L, Fu R, Wang X et al (2014) LL-202, a newly synthesized flavonoid, inhibits tumor growth via inducing G(2)/M phase arrest and cell apoptosis in MCF-7 human breast cancer cells in vitro and in vivo. Toxicol Lett 228:1–12

    Article  CAS  PubMed  Google Scholar 

  23. Pan D, Li W, Miao H et al (2014) LW-214, a newly synthesized flavonoid, induces intrinsic apoptosis pathway by down-regulating Trx-1 in MCF-7 human breast cells. Biochem Pharmacol 87:598–610

    Article  CAS  PubMed  Google Scholar 

  24. Qiang L, Yang Y, You QD et al (2008) Inhibition of glioblastoma growth and angiogenesis by gambogic acid: an in vitro and in vivo study. Biochem Pharmacol 75:1083–1092

    Article  CAS  PubMed  Google Scholar 

  25. Chen Y, Lu N, Ling Y et al (2010) LYG-202, a newly synthesized flavonoid, exhibits potent anti-angiogenic activity in vitro and in vivo. J Pharm Sci 112:37–45

    Article  CAS  Google Scholar 

  26. Huang C, Cao J, Huang KJ et al (2006) Inhibition of STAT3 activity with AG490 decreases the invasion of human pancreatic cancer cells in vitro. Cancer Sci 97:1417–1423

    Article  CAS  PubMed  Google Scholar 

  27. Clarke R, Dickson RB, Brunner N (1990) The process of malignant progression in human breast cancer. Ann Oncol 1:401–407

    CAS  PubMed  Google Scholar 

  28. Soule HD, McGrath CM (1980) Estrogen responsive proliferation of clonal human breast carcinoma cells in athymic mice. Cancer Lett 10:177–189

    Article  CAS  PubMed  Google Scholar 

  29. Zhang X, Chen J, Graham SH et al (2002) Intranuclear localization of apoptosis-inducing factor (AIF) and large scale DNA fragmentation after traumatic brain injury in rats and in neuronal cultures exposed to peroxynitrite. J Neurochem 82:181–191

    Article  CAS  PubMed  Google Scholar 

  30. Das A, Gopalakrishnan B, Voss OH, Doseff AI, Villamena FA (2012) Inhibition of ROS-induced apoptosis in endothelial cells by nitrone spin traps via induction of phase II enzymes and suppression of mitochondria-dependent pro-apoptotic signaling. Biochem Pharmacol 84:486–497

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  31. Qiu P, Guan H, Dong P et al (2011) The p53-, Bax- and p21-dependent inhibition of colon cancer cell growth by 5-hydroxy polymethoxyflavones. Mol Nutr Food Res 55:613–622

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  32. She QB, Solit DB, Ye Q, O’Reilly KE, Lobo J, Rosen N (2005) The BAD protein integrates survival signaling by EGFR/MAPK and PI3K/Akt kinase pathways in PTEN-deficient tumor cells. Cancer Cell 8:287–297

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  33. Millis RM, Alvin ZV, Zhao A, Haddad GE (2012) Effects of IGF-1 on I(K) and I(K1) channels via PI3K/Akt signaling in neonatal cardiac myocytes. Int J Cell Biol 2012:712153

    Article  PubMed Central  PubMed  Google Scholar 

  34. Gottlob K, Majewski N, Kennedy S, Kandel E, Robey RB, Hay N (2001) Inhibition of early apoptotic events by Akt/PKB is dependent on the first committed step of glycolysis and mitochondrial hexokinase. Genes Dev 15:1406–1418

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  35. Yun J, Lv YG, Yao Q, Wang L, Li YP, Yi J (2012) Wortmannin inhibits proliferation and induces apoptosis of MCF-7 breast cancer cells. Eur J Gynaecol Oncol 33:367–369

    CAS  PubMed  Google Scholar 

  36. Chen CY, Hsu YL, Chen YY, Hung JY, Huang MS, Kuo PL (2007) Isokotomolide A, a new butanolide extracted from the leaves of Cinnamomum kotoense, arrests cell cycle progression and induces apoptosis through the induction of p53/p21 and the initiation of mitochondrial system in human non-small cell lung cancer A549 cells. Eur J Pharmacol 574:94–102

    Article  CAS  PubMed  Google Scholar 

  37. Newman DJ, Cragg GM, Snader KM (2003) Natural products as sources of new drugs over the period 1981–2002. J Nat Prod 66:1022–1037

    Article  CAS  PubMed  Google Scholar 

  38. Gabai VL, Meriin AB, Yaglom JA, Volloch VZ, Sherman MY (1998) Role of Hsp70 in regulation of stress-kinase JNK: implications in apoptosis and aging. FEBS Lett 438:1–4

    Article  CAS  PubMed  Google Scholar 

  39. Zamzami N, Marchetti P, Castedo M et al (1995) Sequential reduction of mitochondrial transmembrane potential and generation of reactive oxygen species in early programmed cell death. J Exp Med 182:367–377

    Article  CAS  PubMed  Google Scholar 

  40. Antonsson B, Conti F, Ciavatta A et al (1997) Inhibition of Bax channel-forming activity by Bcl-2. Science 277:370–372

    Article  CAS  PubMed  Google Scholar 

  41. Indran IR, Tufo G, Pervaiz S, Brenner C (2011) Recent advances in apoptosis, mitochondria and drug resistance in cancer cells. Biochim Biophys Acta 1807:735–745

    Article  CAS  PubMed  Google Scholar 

  42. Stridh H, Kimland M, Jones DP, Orrenius S, Hampton MB (1998) Cytochrome c release and caspase activation in hydrogen peroxide- and tributyltin-induced apoptosis. FEBS Lett 429:351–355

    Article  CAS  PubMed  Google Scholar 

  43. Yang L, Zhang HW, Hu R et al (2009) Wogonin induces G1 phase arrest through inhibiting Cdk4 and cyclin D1 concomitant with an elevation in p21Cip1 in human cervical carcinoma HeLa cells. Biochem Cell Biol 87:933–942

    Article  CAS  PubMed  Google Scholar 

  44. Gupta S (2001) Molecular steps of death receptor and mitochondrial pathways of apoptosis. Life Sci 69:2957–2964

    Article  CAS  PubMed  Google Scholar 

  45. Malumbres M (2005) Revisiting the “Cdk-centric” view of the mammalian cell cycle. Cell Cycle 4:206–210

    Article  CAS  PubMed  Google Scholar 

  46. Liu DX, Greene LA (2001) Neuronal apoptosis at the G1/S cell cycle checkpoint. Cell Tissue Res 305:217–228

    Article  CAS  PubMed  Google Scholar 

  47. Yu SM, Kim SJ (2014) Withaferin A-caused production of intracellular reactive oxygen species modulates apoptosis via PI3K/Akt and JNKinase in rabbit articular chondrocytes. J Korean Med Sci 29:1042–1053

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  48. Kaufmann M, Jonat W, Hilfrich J et al (2007) Improved overall survival in postmenopausal women with early breast cancer after anastrozole initiated after treatment with tamoxifen compared with continued tamoxifen: the ARNO 95 Study. J Clin Oncol 25:2664–2670

    Article  CAS  PubMed  Google Scholar 

  49. Staal SP (1987) Molecular cloning of the akt oncogene and its human homologues AKT1 and AKT2: amplification of AKT1 in a primary human gastric adenocarcinoma. Proc Natl Acad Sci USA 84:5034–5037

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  50. Zhou BP, Hung MC (2002) Novel targets of Akt, p21(Cipl/WAF1), and MDM2. Semin Oncol 29:62–70

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by the Fundamental Research Funds for the Central Universities (No. JKY2011051), the National Natural Science Foundation of China (No. 21072232), the Project Program of State Key Laboratory of Natural Medicines, China Pharmaceutical University (No. JKGZ201101), the National Science & Technology Major Project (No. 2012ZX09304-001) and Program for Changjiang Scholars and Innovative Research Team in University (PCSIRT-IRT1193).

Conflict of interests

The authors declare that they have no competing interests.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Qinglong Guo or Na Lu.

Additional information

Yue Zhao and Xiaoping Wang contributed equally to this work.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhao, Y., Wang, X., Sun, Y. et al. LYG-202 exerts antitumor effect on PI3K/Akt signaling pathway in human breast cancer cells. Apoptosis 20, 1253–1269 (2015). https://doi.org/10.1007/s10495-015-1145-x

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10495-015-1145-x

Keywords

Navigation