Skip to main content
Log in

Myofibrillogenesis regulator-1 attenuated hypoxia/reoxygenation-induced apoptosis by inhibiting the PERK/Nrf2 pathway in neonatal rat cardiomyocytes

  • Original Paper
  • Published:
Apoptosis Aims and scope Submit manuscript

Abstract

The purpose of this study was to investigate the role of myofibrillogenesis regulator-1 (MR-1) in cardiomyocyte apoptosis induced by hypoxia/reoxygenation (H/R), through protein kinase R-like ER kinase (PERK)/nuclear factor erythroid 2-related factor 2 (Nrf2) pathway. To address this aim, an H/R model of neonatal rat cardiomyocytes was used. MR-1 was overexpressed using an adenoviral vector system and knocked down using MR-1 specific siRNA. Apoptosis was assessed by using Annexin V/PI double staining, terminal deoxynucleotidyl transferase mediated dUTP-biotin nick end labeling assay, and the Bcl-2/Bax ratio. Western blotting was used to detect the protein levels of MR-1, glucose-regulated protein 78 (GRP78), total and phosphorylated PERK, Nrf2, activating transcription factor 4 (ATF4), C/EBP homologous protein (CHOP), Bcl-2 and Bax. Immunofluorescence staining was used to assess the subcellular location of Nrf2. We found that H/R induced significant apoptosis in neonatal rat cardiomyocytes. MR-1 overexpression attenuated H/R-induced apoptosis, decreased GRP78 (P < 0.01) and CHOP expression (P < 0.05), and increased the Bcl-2/Bax ratio (P < 0.01). MR-1 overexpression suppressed H/R-induced PERK phosphorylation, Nrf2 nuclear translocation, and ATF4 expression (P < 0.01). While MR-1 knockdown aggravated H/R-induced apoptosis, increased expression of GRP78 and CHOP (P < 0.05), and decreased the Bcl-2/Bax ratio (P < 0.01). MR-1 knockdown significantly increased H/R-induced PERK phosphorylation (P < 0.05), Nrf2 nuclear translocation, and ATF4 expression (P < 0.01). These findings suggest that MR-1 alleviates H/R-induced cardiomyocyte apoptosis through inhibition of the PERK/Nrf2 pathway.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Arjmand Shabestari A (2013) Coronary artery calcium score: a review. Iran Red Crescent Med J 15:e16616

    PubMed Central  PubMed  Google Scholar 

  2. Braunwald E, Kloner RA (1985) Myocardial reperfusion: a double-edged sword? J Clin Invest 76:1713–1719

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  3. Li TB, Liu XH, Feng S et al (2004) Characterization of MR-1, a novel myofibrillogenesis regulator in human muscle. Acta Biochim Biophys Sin 36:412–418

    Article  CAS  PubMed  Google Scholar 

  4. Wang X, Tao T, Ding R et al (2014) Kidney protection against ischemia/reperfusion injury by myofibrillogenesis regulator-1. Am J Nephrol 39:279–287

    Article  CAS  PubMed  Google Scholar 

  5. Kim EM, Shin EJ, Choi JH et al (2010) Matrix metalloproteinase-3 is increased and participates in neuronal apoptotic signaling downstream of caspase-12 during endoplasmic reticulum stress. J Biol Chem 285:16444–16452

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  6. Hetz C (2012) The unfolded protein response: controlling cell fate decisions under ER stress and beyond. Nat Rev Mol Cell Biol 13:89–102

    CAS  PubMed  Google Scholar 

  7. Wu XD, Zhang ZY, Sun S et al (2013) Hypoxic preconditioning protects microvascular endothelial cells against hypoxia/reoxygenation injury by attenuating endoplasmic reticulum stress. Apoptosis 18:85–98

    Article  CAS  PubMed  Google Scholar 

  8. Pahl HL (1999) Signal transduction from the endoplasmic reticulum to the cell nucleus. Physiol Rev 79:683–701

    CAS  PubMed  Google Scholar 

  9. Wang C, Li YZ, Wang XR, Lu ZR, Shi DZ, Liu XH (2012) Panax quinquefolium saponins reduce myocardial hypoxia-reoxygenation injury by inhibiting excessive endoplasmic reticulum stress. Shock 37:228–233

    Article  CAS  PubMed  Google Scholar 

  10. Leonard MO, Kieran NE, Howell K et al (2006) Reoxygenation-specific activation of the antioxidant transcription factor Nrf2 mediates cytoprotective gene expression in ischemia-reperfusion injury. FASEB J 20:2624–2626

    Article  CAS  PubMed  Google Scholar 

  11. Miyamoto N, Izumi H, Miyamoto R et al (2011) Transcriptional regulation of activating transcription factor 4 under oxidative stress in retinal pigment epithelial ARPE-19/HPV-16 cells. Invest Ophthalmol Vis Sci 52:1226–1234

    Article  CAS  PubMed  Google Scholar 

  12. Wang X, Liu X, Wang S, Luan K (2012) Myofibrillogenesis regulator 1 induces hypertrophy by promoting sarcomere organization in neonatal rat cardiomyocytes. Hypertens Res 35:597–603

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  13. Liu X, Wu X, Cai L, Tang C, Su J (2003) Hypoxic preconditioning of cardiomyocytes and cardioprotection: phophorylation of HIF-1alpha induced by p42/p44 mitogen-activated protein kinases is involved. Pathophysiology 9:201–205

    Article  CAS  PubMed  Google Scholar 

  14. Li Y, Ge X, Liu X (2009) The cardioprotective effect of postconditioning is mediated by ARC through inhibiting mitochondrial apoptotic pathway. Apoptosis 14:164–172

    Article  CAS  PubMed  Google Scholar 

  15. Gottlieb RA, Burleson KO, Kloner RA, Babior BM, Engler RL (1994) Reperfusion injury induces apoptosis in rabbit cardiomyocytes. J Clin Invest 94:1621–1628

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  16. Yamashita N, Nishida M, Hoshida S et al (1994) Induction of manganese superoxide dismutase in rat cardiac myocytes increases tolerance to hypoxia 24 hours after preconditioning. J Clin Invest 94:2193–2199

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  17. Liu X, Li T, Sun S, Xu F, Wang Y (2006) Role of myofibrillogenesis regulator-1 in myocardial hypertrophy. Am J Physiol Heart Circ Physiol 290:H279–H285

    Article  CAS  PubMed  Google Scholar 

  18. Li HL, She ZG, Li TB et al (2007) Overexpression of myofibrillogenesis regulator-1 aggravates cardiac hypertrophy induced by angiotensin II in mice. Hypertension 49:1399–1408

    Article  CAS  PubMed  Google Scholar 

  19. Dai W, He W, Shang G, Jiang J, Wang Y, Kong W (2010) Gene silencing of myofibrillogenesis regulator-1 by adenovirus-delivered small interfering RNA suppresses cardiac hypertrophy induced by angiotensin II in mice. Am J Physiol Heart Circ Physiol 299:H1468–H1475

    Article  CAS  PubMed  Google Scholar 

  20. McCullough KD, Martindale JL, Klotz LO, Aw TY, Holbrook NJ (2001) Gadd153 sensitizes cells to endoplasmic reticulum stress by down-regulating Bcl2 and perturbing the cellular redox state. Mol Cell Biol 21:1249–1259

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  21. Lalier L, Cartron PF, Juin P et al (2007) Bax activation and mitochondrial insertion during apoptosis. Apoptosis 12:887–896

    Article  CAS  PubMed  Google Scholar 

  22. Wang M, Meng XB, Yu YL et al (2014) Elatoside C protects against hypoxia/reoxygenation-induced apoptosis in H9c2 cardiomyocytes through the reduction of endoplasmic reticulum stress partially depending on STAT3 activation. Apoptosis 19:1727–1735

    Article  CAS  PubMed  Google Scholar 

  23. Thuerauf DJ, Marcinko M, Gude N et al (2006) Activation of the unfolded protein response in infarcted mouse heart and hypoxic cultured cardiac myocytes. Circ Res 99:275–282

    Article  CAS  PubMed  Google Scholar 

  24. Lu F, Tian Z, Zhang W et al (2010) Calcium-sensing receptors induce apoptosis in rat cardiomyocytes via the endo (sarco) plasmic reticulum pathway during hypoxia/reoxygenation. Basic Clin Pharmacol Toxicol 106:396–405

    CAS  PubMed  Google Scholar 

  25. Roybal CN, Marmorstein LY, Vander Jagt DL, Abcouwer SF (2005) Aberrant accumulation of fibulin-3 in the endoplasmic reticulum leads to activation of the unfolded protein response and VEGF expression. Invest Ophthalmol Vis Sci 46:3973–3979

    Article  PubMed  Google Scholar 

  26. Narjoz C, Marisa L, Imbeaud S et al (2009) Genomic consequences of cytochrome P450 2C9 overexpression in human hepatoma cells. Chem Res Toxicol 22:779–787

    Article  CAS  PubMed  Google Scholar 

  27. Inberg A, Linial M (2010) Protection of pancreatic beta-cells from various stress conditions is mediated by DJ-1. J Biol Chem 285:25686–25698

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  28. Reuland DJ, Khademi S, Castle CJ et al (2013) Upregulation of phase II enzymes through phytochemical activation of Nrf2 protects cardiomyocytes against oxidant stress. Free Radic Biol Med 56:102–111

    Article  CAS  PubMed  Google Scholar 

  29. He X, Kan H, Cai L, Ma Q (2009) Nrf2 is critical in defense against high glucose-induced oxidative damage in cardiomyocytes. J Mol Cell Cardiol 46:47–58

    Article  CAS  PubMed  Google Scholar 

  30. Ichikawa T, Li J, Meyer CJ, Janicki JS, Hannink M, Cui T (2009) Dihydro-CDDO-trifluoroethyl amide (dh404), a novel Nrf2 activator, suppresses oxidative stress in cardiomyocytes. PLoS ONE 4:e8391

    Article  PubMed Central  PubMed  Google Scholar 

  31. Huang XS, Chen HP, Yu HH, Yan YF, Liao ZP, Huang QR (2014) Nrf2-dependent upregulation of antioxidative enzymes: a novel pathway for hypoxic preconditioning-mediated delayed cardioprotection. Mol Cell Biochem 385:33–41

    Article  CAS  PubMed  Google Scholar 

  32. Afonyushkin T, Oskolkova OV, Philippova M et al (2010) Oxidized phospholipids regulate expression of ATF4 and VEGF in endothelial cells via NRF2-dependent mechanism: novel point of convergence between electrophilic and unfolded protein stress pathways. Arterioscler Thromb Vasc Biol 30:1007–1013

    Article  CAS  PubMed  Google Scholar 

  33. Du P, Saidu NE, Intemann J, Jacob C, Montenarh M (2014) A new tellurium-containing amphiphilic molecule induces apoptosis in HCT116 colon cancer cells. Biochim Biophys Acta 1840:1808–1816

    Article  CAS  PubMed  Google Scholar 

  34. He CH, Gong P, Hu B et al (2001) Identification of activating transcription factor 4 (ATF4) as an Nrf2-interacting protein. Implication for heme oxygenase-1 gene regulation. J Biol Chem 276:20858–20865

    Article  CAS  PubMed  Google Scholar 

  35. Cullinan SB, Diehl JA (2004) PERK-dependent activation of Nrf2 contributes to redox homeostasis and cell survival following endoplasmic reticulum stress. J Biol Chem 279:20108–20117

    Article  CAS  PubMed  Google Scholar 

  36. Zong ZH, Du ZX, Li N et al (2012) Implication of Nrf2 and ATF4 in differential induction of CHOP by proteasome inhibition in thyroid cancer cells. Biochim Biophys Acta 1823:1395–1404

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by Grants from National Natural Science Foundation of China 31471094 (XH Liu) and 81170140 (XH Liu).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiu-Hua Liu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tao, TQ., Wang, XR., Liu, M. et al. Myofibrillogenesis regulator-1 attenuated hypoxia/reoxygenation-induced apoptosis by inhibiting the PERK/Nrf2 pathway in neonatal rat cardiomyocytes. Apoptosis 20, 285–297 (2015). https://doi.org/10.1007/s10495-014-1081-1

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10495-014-1081-1

Keywords

Navigation