Skip to main content
Log in

Investigation of Oscillatory States Involving Acoustic Mode Shifts in a Turbulent Syngas Combustion using Non-stationary Time-series Analysis

  • Published:
Flow, Turbulence and Combustion Aims and scope Submit manuscript

Abstract

The transition of thermo-acoustic oscillations in a turbulent bluff-body syngas combustor is analyzed experimentally in the present work. The analysis was carried out for three syngas compositions using simultaneous, unsteady pressure measurement and OH* chemiluminescence across the variation of Reynolds number, Re, over 2289–8009 range. It is observed that across the variation of controlled parameters, the system undergoes series of dynamical states having different nonlinear oscillations. In this paper, we investigate the seldom observed transitions from low-frequency instability to high-frequency instability through two-scale oscillations, and finally, it attains the combustion noise state in response to the variation in Re. To identify the nature of these thermo-acoustic oscillations, time-series analysis based on wavelet transformation, phase portrait, and a novel wavelet-based measure is performed. Based on the results of time-resolved OH* chemiluminescence, the distinct flame behavior is observed in response to the change in Re. It is observed that syngas combustion instability is driven by small-scale structures due to flame stabilization and modulation in the shear layer. Further, the wavelet-based analysis also tracks the evolution of the dynamical state by quantifying the stable state and other non-stable states to be composed of continuously varying phase shifts resulting in stable/quasi-stable combustion.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  • Altay, H.M., Speth, R.L., Hudgins, D.E., Ghoniem, A.F.: Flame-vortex interaction driven combustion dynamics in a backward-facing step combustor. Combust flame. 156, 1111–1125 (2009)

    Article  Google Scholar 

  • Balachandran, R., Chakravarthy, S.R., Sujith, R.I.: Characterization of an Acoustically Self-Excited Combustor for Spray Evaporation. J. Propuls Power 24, 1382–1389 (2008)

    Article  Google Scholar 

  • Baraiya, N.A., Chakrvarthy, S.R.: Effect of chemical composition of syngas on combustion dynamics inside bluff-body type turbulent syngas combustor. In: Turbo expo: power for land, sea, and air (Vol. 51067, p. V04BT04A044). American Society of Mechanical Engineers. (2018). https://doi.org/10.1115/GT2018-76963

  • Baraiya, N.A., Chakravarthy, S.R.: Effect of syngas composition on high-frequency combustion instability in a non-premixed turbulent combustor. Int. J. Hydrogen Energy. 44(12), 6299–6312 (2019a)

    Article  Google Scholar 

  • Baraiya, N.A., Chakravarthy, S.R.: The role of mean flame anchoring on the stability characteristics of syngas, synthesis natural gas, and hydrogen fuels in a turbulent non-premixed bluff-body combustor. In: ASME Turbo Expo 2019: Turbomachinery technical conference and exposition 2019. American society of mechanical engineers digital collection. Paper No: GT2019-91981, V04BT04A054; (2019b). https://doi.org/10.1115/GT2019-91981

  • Baraiya, N.A., Chakravarthy, S.R.: Excitation of high-frequency thermoacoustic oscillations by syngas in a non-premixed bluff-body combustor. Int. J. Hydrogen Energy. 44(29), 15598–15609 (2019c)

    Article  Google Scholar 

  • Baraiya, N. A., Chakravarthy, S.R.: Syngas Combustion Dynamics in a Bluff-Body Turbulent Combustor. In: Mukhopadhyay, A., Sen, S., Basu, DN., Mondal, S. (eds.) Dynamics and Control of Energy Systems, pp. 239–263. Springer, Singapore (2020)

  • Baraiya, N.A., Nagarajan, B. Chakrvarthy, S.R.: Experimental investigation of combustion dynamics in a turbulent syngas combustor. In: Turbo expo: Power for land, sea, and air 2017 Jun 26 (Vol. 50855, p. V04BT04A051). American Society of Mechanical Engineers. (2017). https://doi.org/10.1115/GT2017-64849

  • Candel, S.: Combustion dynamics and control: Progress and challenges. Proc. Combust. Inst. 29(1), 1–28 (2002)

    Article  Google Scholar 

  • Chakravarthy, S.R., Sivakumar, R., Shreenivasan, O.J.: Vortex-acoustic lock-on in bluff-body and backward-facing step combustors. Sadhana - Acad Proc Eng Sci. 32, 145–154 (2007)

    MATH  Google Scholar 

  • Chakravarthy, S.R., Sampath, R., Ramanan, V.: Dynamics and diagnostics of flame-acoustic interactions. Combust. Sci. Technol. 189(3), 395–437 (2017)

    Article  Google Scholar 

  • Chen, L., Yong, S.Z., Ghoniem, A.F.: Oxy-fuel combustion of pulverized coal: Characterization, fundamentals, stabilization and CFD modeling. Prog. Energy Combust. Sci. 38(2), 156–214 (2012)

    Article  Google Scholar 

  • Choi, O., Lee, M.C.: Investigation into the combustion instability of synthetic natural gases using high-speed flame images and their proper orthogonal decomposition. Int. J. of Hydrogen Energy. 41(45), 20731–20743 (2019)

    Article  Google Scholar 

  • Dodo, S., Asai, T., Koizumi, H., Takahashi, H., Yoshida, S., Inoue, H.: Performance of a multiple-injection dry low NOx combustor with hydrogen-rich syngas fuels. J. Eng. Gas Turbines Power. 135, 011501 (2013)

    Article  Google Scholar 

  • Dowling, A.P.: A kinematic model of a ducted flame. J. Fluid Mech. 394, 51–72 (1999)

    Article  MATH  Google Scholar 

  • Dowling, A.P., Stow, S.R.: Acoustic analysis of gas turbine combustors. J. Propuls. Power. 19(5), 751–764 (2003)

    Article  Google Scholar 

  • Ducruix, S., Schuller, T., Durox, D., Candel, S.: Combustion dynamics and instabilities: Elementary coupling and driving mechanisms. J. Propuls. Power. 19(5), 722–734 (2003)

    Article  Google Scholar 

  • Ghosh, A., Sujith, R.I.: Emergence of order from chaos: A phenomenological model of coupled oscillators. Chaos, Solitons and Fractals. 141, 110334 (2020)

    Article  MathSciNet  Google Scholar 

  • Giezendanner-Thoben, R., Meier, U., Meier, W., Aigner, M.: Phase-locked temperature measurements by two-line oh plif thermometry of a self-excited combustion instability in a gas turbine model combustor. Flow Turbul. Combust. 75, 317–333 (2005)

    Article  Google Scholar 

  • Gotoda, H., Nikimoto, H., Miyano, T., Tachibana, S.: Dynamic properties of combustion instability in a lean premixed gas-turbine combustor. Chaos: An Interdiscip. J. Nonlinear Sci. 21(1), 013124 (2011)

    Article  Google Scholar 

  • Guo, H., Neill, W.S.: A numerical study on the effect of hydrogen/reformate gas addition on flame temperature and NO formation in strained methane/air diffusion flames. Combust. Flame. 156(2), 477–483 (2009)

    Article  Google Scholar 

  • Han, X., Li, J., Morgans, A.S.: Prediction of combustion instability limit cycle oscillations by combining flame describing function simulations with a thermoacoustic network model. Combust. Flame. 162(10), 3632–3647 (2015)

    Article  Google Scholar 

  • Hasegawa, T., Nakata, T.: A study of combustion characteristics of gasified coal fuel. J. Eng. Gas Turbines Power. 123(1), 22–32 (2001)

    Article  Google Scholar 

  • Hasegawa, T., Tamaru, T.: Gas turbine combustion technology reducing both fuel-NOx and thermal-NOx emissions for oxygen-blown IGCC with hot/dry synthetic gas cleanup. J. Eng. Gas Turbines Power. 129, 358–369 (2007)

    Article  Google Scholar 

  • Hong, S., Shanbhogue, S.J., Speth, R.L., Ghoniem, A.F.: On the phase between pressure and heat release fluctuations for propane/hydrogen flames and its role in mode transitions. Combust Flame. 160, 2827–2842 (2019)

    Article  Google Scholar 

  • Hu, E., Huang, Z., He, J., Jin, C., Zheng, J.: Experimental and numerical study on laminar burning characteristics of premixed methane-hydrogen-air flame. Int. J. Hydrogen Energy. 34(11), 4876–4888 (2009)

    Article  Google Scholar 

  • Kabiraj, L., Saurabh, A., Wahi, P., Sujith, R.I.: Route to chaos for combustion instability in ducted laminar premixed flames. Chaos: An Interdisciplinary J. Nonlinear Sci. 22(2), 023129 (2012)

    Article  Google Scholar 

  • Kabiraj, L., Sujith, R.I., Wahi, P.: Bifurcations of self-excited ducted laminar premixed flames. J. Eng. Gas Turbines Power 134(3), 031502 (2012a)

    Article  Google Scholar 

  • Kalitan, D.M., Petersen, E.L., Mertens, J.D., Crofton, M.W.: Ignition of lean CO/H2/air mixtures at elevated pressures. Proc of ASME Turbo Expo. 2006. GT2006:90488 (2006)

  • Kelman, J.B., Masri, A.R.: Quantitative technique for imaging mixture fraction, temperature, and the hydroxyl radical in turbulent diffusion flames. Appl. Opt. 36(15), 3506–3514 (1997)

    Article  Google Scholar 

  • Kim, K.T., Lee, J.G., Quay, B.D., Santavicca, D.A.: Spatially distributed flame transfer functions for predicting combustion dynamics in lean premixed gas turbine combustors. Combust. Flame. 157(9), 1718–1730 (2010)

    Article  Google Scholar 

  • Lee, T., Kim, K.T.: Combustion dynamics of lean fully-premixed hydrogen-air flames in a mesoscale multinozzle array. Combust. Flame 218, 234–246 (2020)

    Article  Google Scholar 

  • Lee, M.C., Seo, S.B., Chung, J.W., Kim, S.M., Joo, Y.J., Ahn, D.H.: Gas turbine combustion performance test of hydrogen and carbon monoxide synthetic gas. Fuel 89, 1485–1491 (2010)

    Article  Google Scholar 

  • Lee, M.C., Seo, S.B., Yoon, J., Kim, M., Yoon, Y.: Experimental study on the effect of N2CO2 and steam dilution on the combustion performance of H2 and CO synthetic gas in an industrial gas turbine. Fuel. 102, 431–438 (2012)

    Article  Google Scholar 

  • Lieuwen, T.C.: Unsteady Combustor Physics. Cambridge University Press, Cambridge (2012)

    Book  MATH  Google Scholar 

  • Lieuwen, T., McDonell, V., Petersen, E., Santavicca, D.: Fuel flexibility influences on premixed combustor blowout, flashback, autoignition, and stability. J Eng Gas Turb Power. 130, 011506 (2008)

    Article  Google Scholar 

  • Lieuwen, T.C., Yang, V., Yetter, R.: Synthesis gas combustion: fundamentals and applications. CRC Press, USA (2009)

    Book  Google Scholar 

  • Milton, B.E., Keck, J.C.: Laminar burning velocities in stoichiometric hydrogen and hydrogen- hydrocarbon gas mixtures. Combust. Flame. 58(1), 13–22 (1984a)

    Article  Google Scholar 

  • Milton, B.E., Keck, J.C.: Laminar burning velocities in stoichiometric hydrogen and hydrogen-hydrocarbon gas mixtures. Combust. Flame. 58(1), 13–22 (1984b)

    Article  Google Scholar 

  • Mondal, S., Pawar, S.A., Sujith, R.I.: Synchronous behaviour of two interacting oscillatory systems undergoing quasiperiodic route to chaos. Chaos: An Interdiscip. J. Nonlinear Sci. 27(10), 103119 (2017)

    Article  MathSciNet  Google Scholar 

  • Nair, V., Thampi, G., Karuppusamy, S., Gopalan, S., Sujith, R.I.: Loss of chaos in combustion noise as a precursor of impending combustion instability. Int. J. Spray Combust. Dyn. 5(4), 273–290 (2013)

    Article  Google Scholar 

  • Natarajan, J., Lieuwen, T.C., Seitzman, J.: Laminar flame speeds of H2/CO mixtures: effect of CO2 dilution, preheat temperature, and pressure. Combust. Flame. 151(1–2), 104–119 (2007)

    Article  Google Scholar 

  • Nayfeh, A.H., Balachandran, B.: Applied nonlinear dynamics: analytical, computational, and experimental methods. Wiley, New York (2008)

    MATH  Google Scholar 

  • Noble, D.R., Zhang, Q., Shareef, A., Tootle, J., Meyers, A., Lieuwen, T.C.: Syngas mixture composition effects upon flashback and blowout. Proc. of ASME Turbo Expo. 2006. GT2006:90470 (2006)

  • Noiray, N., Durox, D., Schuller, T., Candel, S.: A unified framework for nonlinear combustion instability analysis based on the flame describing the function. J. Fluid Mech. 615, 139–167 (2008)

    Article  MATH  Google Scholar 

  • Palies, P., Durox, D., Schuller, T., Candel, S.: Nonlinear combustion instability analysis based on the flame describing function applied to turbulent premixed swirling flames. Combust. Flame. 158(10), 1980–1991 (2011)

    Article  Google Scholar 

  • Park, J., Lee, M.C.: Combustion instability characteristics of H2/CO/CH4 syngases and synthetic natural gases in a partially premixed gas turbine combustor: Part II Time lag analysis. Int. J. Hydrogen Energy. 41(18), 1304–1312 (2016)

    Article  Google Scholar 

  • Park, J., Lee, M.C.: Combustion instability characteristics of H2/CO/CH4 syngases and synthetic natural gases in a partially-premixed gas turbine combustor: Part I Frequency and mode analysis. Int. J. Hydrogen Energy. 41(18), 7484–7493 (2016a)

    Article  Google Scholar 

  • Rayleigh, L.: The theory of sound, vols. 2. The Macmillan Company 1877 (reprinted 1945 by Dover Publications, New York). https://scholar.google.com/scholar?q=Lord%20Rayleigh,%20The%20Theory%20of%20Sound,%20vol.%202,%20The%20Macmillan%20Company%201878%20 (1945)

  • Reyes, M., Tinaut, F.V., Horrillo, A., Lafuente, A.: Experimental characterization of burning velocities of premixed methane-air and hydrogen-air mixtures in a constant volume combustion bomb at moderate pressure and temperature. Appl. Therm. Eng. 130, 684–697 (2018)

    Article  Google Scholar 

  • Schildmacher, K., Koch, R., Bauer, H.: Experimental Characterization of Premixed Flame Instabilities of a Model Gas Turbine Burner. Flow, Turbul. Combust. 76, 177–197 (2006)

    Article  Google Scholar 

  • Seo, S., Lee, S.: Effects of Unmixedness on Combustion Instabilities in a Lean-Premixed Gas Turbine Combustor. Flow, Turbul. Combust. 85, 95–112 (2010)

    Article  MATH  Google Scholar 

  • Shanbhogue, S.J., Sanusi, Y.S., Taamallah, S., Habib, M.A., Mokheimer, E.M.A., Ghoniem, A.F.: Flame macrostructures, combustion instability, and extinction strain scaling in swirl-stabilized premixed CH4/H2combustion. Combust flame. 163, 494–507 (2016)

    Article  Google Scholar 

  • Shih, H.Y.: Computed extinction limits and flame structures of H2/O2 counterflow diffusion flames with CO2 dilution. Int. J. Hydrogen Energy. 34(9), 4005–4013 (2009)

    Article  MathSciNet  Google Scholar 

  • Srinivasan, S., Ranjan, R., Menon, S.: Flame Dynamics During Combustion Instability in a High-Pressure, Shear-Coaxial Injector Combustor. Flow, Turbul. Combust. 94, 237–262 (2015)

    Article  Google Scholar 

  • Stein, O.T., Böhm, B., Dreizler, A., Kempf, A.M.: Highly-resolved LES and PIV analysis of isothermal turbulent opposed jets for combustion applications. Flow, Turbul. Combust. 87, 425–447 (2011)

    Article  MATH  Google Scholar 

  • Strakey, P., Sidwell, T., Ontko, J.: Investigation of the effects of hydrogen addition on lean extinction in a swirl stabilized combustor. Proc. Combust. Inst. 31(2), 3173–3180 (2007)

    Article  Google Scholar 

  • Taamallah, S., Labry, Z.A., Shanbhogue, S.J., Ghoniem, A.F.: Thermo-acoustic instabilities in lean premixed swirl-stabilized combustion and their link to acoustically coupled and decoupled flame macrostructures. Proc Combust Inst. 35, 3273–3282 (2015)

    Article  Google Scholar 

  • Taamallah, S., LaBry, Z.A., Shanbhogue, S.J., Habib, M.A., Ghoniem, A.F.: Correspondence between “Stable” flame macrostructure and thermo-acoustic instability in premixed swirl-stabilized turbulent combustion. J Eng Gas Turbines Power. 137, 071505 (2015)

    Article  Google Scholar 

  • Verhelst, S., Wallner, T.: Hydrogen-fueled internal combustion engines. Prog. Energy Combust. Sci. 35(6), 490–527 (2009)

    Article  Google Scholar 

  • Wall, T.F.: Combustion processes for carbon capture. Proc. Combust. Inst. 31(1), 31–47 (2007)

    Article  MathSciNet  Google Scholar 

  • Walton, S.M., He, X., Zigler, B.T., Wooldridge, M.S.: An experimental investigation of the ignition properties of hydrogen and carbon monoxide mixtures for syngas turbine applications. Proc Combust Inst. 31(2), 3147–3154 (2007)

    Article  Google Scholar 

  • Weigand, P., Meier, W., Duan, X.R., Giezendanner-Thoben, R., Meier, U.: Laser diagnostic study of the mechanism of a periodic combustion instability in a gas turbine model combustor. Flow. Turbul. Combust. 75, 275–292 (2005)

    Article  Google Scholar 

  • Whitty, K.J., Zhang, H.R., Eddings, E.G.: Emissions from syngas combustion. Comb. Sci. Tech. 180(6), 1117–1136 (2008)

    Article  Google Scholar 

  • Yoon, J., Joo, S., Lee, M.C., Kim, J., Oh, J., Yoon, Y.: The effect of fuel composition on combustion instability mode occurrence in a model gas turbine combustor. In: Turbo expo: power for land, sea, and air 2015 Jun 15 (Vol. 56680, p. V04AT04A045). American Society of Mechanical Engineers. Paper No: GT2015-42601, V04AT04A045; (2015). https://doi.org/10.1115/GT2015-42601

  • Yoon, J., Seongpil, J., Jeongjin, K., Lee, M.C., Jong, G., Yoon, Y.: Effects of convection time on the high harmonic combustion instability in a partially premixed combustor. Proci of the Comb Inst. 36(3), 3753–3761 (2017)

    Article  Google Scholar 

  • Zinn, B.T., Lieuwen, T.C.: Combustion instabilities: Basic concepts. Combust. Instab. Gas Turbine Engines: Oper. Exp. Fundam. Mech. Modeling 210, 3–26 (2005)

    Google Scholar 

Download references

Acknowledgements

We thank Mr. Aravind I. B. and Mr. Rohit Bhattacharjee for their help during the work. The National Centre for Combustion R & D was supported by the Science and Engineering Research Board. This work was also partially supported by the UK-India Education and Research Initiative.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nikhil A. Baraiya.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Baraiya, N.A., Ramanan, V., Baladandayuthapani, N. et al. Investigation of Oscillatory States Involving Acoustic Mode Shifts in a Turbulent Syngas Combustion using Non-stationary Time-series Analysis. Flow Turbulence Combust 107, 1067–1089 (2021). https://doi.org/10.1007/s10494-021-00258-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10494-021-00258-x

Keywords

Navigation