Skip to main content
Log in

Simulation of Microbubble Dynamics in Turbulent Channel Flows

  • Published:
Flow, Turbulence and Combustion Aims and scope Submit manuscript

Abstract

This work investigates microbubble dynamics in four-way (with coalescence) coupled microbubble-laden turbulent channel flows. Upward and downward flows of water at a shear Reynolds number of Reτ = 150 are predicted using direct numerical simulation (DNS). Microbubbles, assumed to be non-deformable and spherical, are injected into the water flow and tracked using a Lagrangian approach. One-way and two-way coupled predictions were successfully compared against other available DNS-based results and used to demonstrate different trends in bubble preferential motion, with bubbles pushed by the lift force towards the wall in upflow and towards the centre of the channel in downflow. Four-way coupled simulations with bubble coalescence clearly demonstrate that the presence of the bubbles, and collisions between them, have a non-negligible effect on the fluid phase. Analysis of bubble collision behaviour highlights that binary collisions most frequently occur at very small approach angles and with low relative approach velocities. Once a collision is detected, the occurrence of bubble coalescence is evaluated, with special attention given to the performance of different bubble coalescence models. The film drainage model returns a 100% coalescence efficiency, while on the other hand the energy model returns a 0% coalescence efficiency, with this large discrepancy requiring further investigation and model development. The knowledge gained from the present results on the mechanisms that underpin bubble collisions is of value to the further development of more advanced coalescence closure models.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  • Asiagbe, K.S., Fairweather, M., Njobuenwu, D.O., Colombo, M.: Large eddy simulation of microbubble transport in a turbulent horizontal channel flow. Int. J. Multiph. Flow 94, 80–93 (2017)

    MathSciNet  Google Scholar 

  • Asiagbe, K.S., Fairweather, M., Njobuenwu, D.O., Colombo, M.: Microbubbles coalescence during transport in vertical channel flows. In: Friedl, A., Klemeš, J.J., Radl, S., Varbanov, P.S., Wallek, T. (eds.) Computer Aided Chemical Engineering, vol. 43, pp. 79–84. Elsevier, Amsterdam (2018)

    Google Scholar 

  • Asiagbe, K.S., Fairweather, M., Njobuenwu, D.O., Colombo, M.: Large eddy simulation of microbubble dispersion and flow field modulation in vertical channel flows. AIChE J. 65, 1325–1339 (2019)

    Google Scholar 

  • Balachandar, S., Eaton, J.K.: Turbulent dispersed multiphase flow. Annu. Rev. Fluid Mech. 42, 111–133 (2010)

    MATH  Google Scholar 

  • Bolotnov, I.A., Jansen, K.E., Drew, D.A., Oberai, A.A., Lahey, R.T., Podowski, M.Z.: Detached direct numerical simulations of turbulent two-phase bubbly channel flow. Int. J. Multiph. Flow 37, 647–659 (2011)

    Google Scholar 

  • Brennen, C.E.: A Review of Added Mass and Fluid Inertial Forces. Naval Civil Engineering Laboratory, Port Hueneme, CA (1982)

    Google Scholar 

  • Chen, R., Yu, H., Zhu, L., Patil, R.M., Lee, T.: Spatial and temporal scaling of unequal microbubble coalescence. AIChE J. 63, 1441–1450 (2017)

    Google Scholar 

  • Chesters, A.K.: Modelling of coalescence processes in fluid-liquid dispersions: a review of current understanding. Chem. Eng. Res. Des. 69, 259–270 (1991)

    Google Scholar 

  • Clift, R., Grace, J.R., Weber, M.E.: Bubbles, Drops, and Particles. Volume Book, Whole. Academic Press, London (1978)

    Google Scholar 

  • Deen, N.G., van Sint Annaland, M., Kuipers, J.A.M.: Multi-scale modeling of dispersed gas–liquid two-phase flow. Chem. Eng. Sci. 59, 1853–1861 (2004)

    Google Scholar 

  • Deutsch, S., Castano, J.: Microbubble skin friction reduction on an axisymmetric body. Phys. Fluids 29, 3590–3597 (1986)

    Google Scholar 

  • Elghobashi, S.: On predicting particle-laden turbulent flows. Appl. Sci. Res. 52, 309–329 (1994)

    Google Scholar 

  • Ferrante, A., Elghobashi, S.: On the physical mechanisms of drag reduction in a spatially developing turbulent boundary layer laden with microbubbles. J. Fluid Mech. 503, 345–355 (2004)

    MATH  Google Scholar 

  • Ferrante, A., Elghobashi, S.: Reynolds number effect on drag reduction in a microbubble-laden spatially developing turbulent boundary layer. J. Fluid Mech. 543, 93–106 (2005)

    MATH  Google Scholar 

  • Fischer, P.F., Lottes, J.W., Kerkemeier, S.G.: nek5000 web page. http://nek5000.mcs.anl.gov (2008). Accessed 25 Oct 2016

  • Giusti, A., Lucci, F., Soldati, A.: Influence of the lift force in direct numerical simulation of upward/downward turbulent channel flow laden with surfactant contaminated microbubbles. Chem. Eng. Sci. 60, 6176–6187 (2005)

    Google Scholar 

  • Gutiérrez-Torres, C.C., Hassan, Y.A., Jimenez-Bernal, J.A.: Turbulence structure modification and drag reduction by microbubble injections in a boundary layer channel flow. J. Fluids Eng. 130, 111304 (2008)

    Google Scholar 

  • Hoppe, F., Breuer, M.: A deterministic and viable coalescence model for Euler–Lagrange simulations of turbulent microbubble-laden flows. Int. J. Multiph. Flow 99, 213–230 (2018)

    MathSciNet  Google Scholar 

  • Howarth, W.J.: Coalescence of drops in a turbulent flow field. Chem. Eng. Sci. 19, 33–38 (1964)

    Google Scholar 

  • Jacob, B., Olivieri, A., Miozzi, M., Campana, E.F., Piva, R.: Drag reduction by microbubbles in a turbulent boundary layer. Phys. Fluids 22, 115104 (2010)

    Google Scholar 

  • Kamp, A.M., Chesters, A.K., Colin, C., Fabre, J.: Bubble coalescence in turbulent flows: a mechanistic model for turbulence-induced coalescence applied to microgravity bubbly pipe flow. Int. J. Multiph. Flow 27, 1363–1396 (2001)

    MATH  Google Scholar 

  • Kuerten, J.G.M.: Point-particle DNS and LES of particle-laden turbulent flow—a state-of-the-art review. Flow Turbul. Combust. 97, 689–713 (2016)

    Google Scholar 

  • Lau, Y.M., Deen, N.G., Kuipers, J.A.M.: Development of an image measurement technique for size distribution in dense bubbly flows. Chem. Eng. Sci. 94, 20–29 (2013)

    Google Scholar 

  • Legendre, D., Magnaudet, J.: The lift force on a spherical bubble in a viscous linear shear flow. J. Fluid Mech. 368, 81–126 (1998)

    MathSciNet  MATH  Google Scholar 

  • Lehr, F., Millies, M., Mewes, D.: Bubble-size distributions and flow fields in bubble columns. AlChE J. 48, 2426–2443 (2002)

    Google Scholar 

  • Liao, Y., Lucas, D.: A literature review on mechanisms and models for the coalescence process of fluid particles. Chem. Eng. Sci. 65, 2851–2864 (2010)

    Google Scholar 

  • Liu, N., Cheng, B., Que, X., Lu, X.: Direct numerical simulations of turbulent channel flows with consideration of the buoyancy effect of the bubble phase. J. Hydrodyn. 23, 282–288 (2011)

    Google Scholar 

  • Lu, J., Biswas, S., Tryggvason, G.: A DNS study of laminar bubbly flows in a vertical channel. Int. J. Multiph. Flow 32, 643–660 (2006)

    MATH  Google Scholar 

  • Lu, J., Corvalan, C.M., Chew, Y.M.J., Huang, J.-Y.: Coalescence of small bubbles with surfactants. Chem. Eng. Sci. 196, 493–500 (2019)

    Google Scholar 

  • Madavan, N.K., Deutsch, S., Merkle, C.L.: Reduction of turbulent skin friction by microbubbles. Phys. Fluids 27, 356–363 (1984)

    Google Scholar 

  • Maxey, M.R., Riley, J.J.: Equation of motion for a small rigid sphere in a nonuniform flow. Phys. Fluids 26, 883–889 (1983)

    MATH  Google Scholar 

  • Maxey, M.R., Chang, E.J., Wang, L.P.: Simulation of interactions between microbubbles and turbulent Flows. Appl. Mech. Rev. 47, S70–S74 (1994)

    Google Scholar 

  • Mazzitelli, I.M., Lohse, D., Toschi, F.: On the relevance of the lift force in bubbly turbulence. J. Fluid Mech. 488, 283–313 (2003a)

    MATH  Google Scholar 

  • Mazzitelli, I.M., Lohse, D., Toschi, F.: The effect of microbubbles on developed turbulence. Phys. Fluids 15, L5–L8 (2003b)

    MATH  Google Scholar 

  • Molin, D., Marchioli, C., Soldati, A.: Turbulence modulation and microbubble dynamics in vertical channel flow. Int. J. Multiph. Flow 42, 80–95 (2012)

    Google Scholar 

  • Naumann, Z., Schiller, L.: A drag coefficient correlation. Z. Ver Deutsch. Ing. 77, 318–323 (1935)

    Google Scholar 

  • Oolman, T.O., Blanch, H.W.: Bubble coalescence in stagnant liquids. Chem. Eng. Commun. 43, 237–261 (1986)

    Google Scholar 

  • Pal, S., Merkle, C.L., Deutsch, S.: Bubble characteristics and trajectories in a microbubble boundary layer. Phys. Fluids 31, 744–751 (1988)

    Google Scholar 

  • Park, H.J., Saito, D., Tasaka, Y., Murai, Y.: Color-coded visualization of microbubble clouds interacting with eddies in a spatially developing turbulent boundary layer. Exp. Therm. Fluid Sci. 109, 109919 (2019)

    Google Scholar 

  • Patera, A.T.: A spectral element method for fluid dynamics: laminar flow in a channel expansion. J. Comput. Phys. 54, 468–488 (1984)

    MATH  Google Scholar 

  • Prince, M.J., Blanch, H.W.: Bubble coalescence and break-up in air-sparged bubble columns. AlChE J. 36, 1485–1499 (1990)

    Google Scholar 

  • Rasquin, M., Smith, C., Chitale, K., Seol, E.S., Matthews, B.A., Martin, J.L., Sahni, O., Loy, R.M., Shephard, M.S., Jansen, K.E.: Scalable implicit flow solver for realistic wing simulations with flow control. Comput. Sci. Eng. 16, 13–21 (2014)

    Google Scholar 

  • Shah, Y.T., Kelkar, B.G., Godbole, S.P., Deckwer, W.D.: Design parameters estimations for bubble column reactors. AIChE J. 28, 353–379 (1982)

    Google Scholar 

  • Shinnar, R.: On the behaviour of liquid dispersions in mixing vessels. J. Fluid Mech. 10, 259–275 (1961)

    MATH  Google Scholar 

  • Shinnar, R., Church, J.M.: Statistical theories of turbulence in predicting particle size in agitated dispersions. Ind. Eng. Chem. Res. 52, 253–256 (1960)

    Google Scholar 

  • Snyder, M.R., Knio, O.M., Katz, J., Le Maître, O.P.: Statistical analysis of small bubble dynamics in isotropic turbulence. Phys. Fluids 19, 065108 (2007)

    MATH  Google Scholar 

  • Sommerfeld, M., Bourloutski, E., Bröder, D.: Euler/Lagrange calculations of bubbly flows with consideration of bubble coalescence. Can. J. Chem. Eng. 81, 508–518 (2003)

    Google Scholar 

  • Sovová, H.: Breakage and coalescence of drops in a batch stirred vessel—II comparison of model and experiments. Chem. Eng. Sci. 36, 1567–1573 (1981)

    Google Scholar 

  • Spelt, P.D.M., Biesheuvel, A.: On the motion of gas bubbles in homogeneous isotropic turbulence. J. Fluid Mech. 336, 221–244 (1997)

    MATH  Google Scholar 

  • Takagi, S., Matsumoto, Y.: Surfactant effects on bubble motion and bubbly flows. Annu. Rev. Fluid Mech. 43, 615–636 (2011)

    MATH  Google Scholar 

  • Todreas, N.E., Kazimi, M.S.: Nuclear Systems Volume I: Thermal Hydraulic Fundamentals. CRC Press, Boca Raton (2011)

    Google Scholar 

  • Tomiyama, A., Tamai, H., Zun, I., Hosokawa, S.: Transverse migration of single bubbles in simple shear flows. Chem. Eng. Sci. 57, 1849–1858 (2002)

    Google Scholar 

  • Tryggvason, G., Ma, M., Lu, J.: DNS–assisted modeling of bubbly flows in vertical channels. Nucl. Sci. Eng. 184, 312–320 (2016)

    Google Scholar 

  • Wang, L.-P., Maxey, M.R.: The motion of microbubbles in a forced isotropic and homogeneous turbulence. Appl. Sci. Res. 51, 291–296 (1993)

    Google Scholar 

  • Wen, L.H., Ismail, A.B., Menon, P.M., Saththasivam, J., Thu, K., Choon, N.K.: Case studies of microbubbles in wastewater treatment. Desalin. Water Treat. 30, 10–16 (2011)

    Google Scholar 

  • Yonemoto, Y., Yanagisawa, H., Kawara, Z., Kunugi, T.: Coalescence of microbubble. J. JSEM 8, 38–44 (2008)

    Google Scholar 

Download references

Acknowledgements

JZ gratefully acknowledges funding through an Anniversary Research Scholarship from the University of Leeds.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jian Zhai.

Ethics declarations

Conflict of interest

The authors declare that they have no conflicts of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhai, J., Fairweather, M. & Colombo, M. Simulation of Microbubble Dynamics in Turbulent Channel Flows. Flow Turbulence Combust 105, 1303–1324 (2020). https://doi.org/10.1007/s10494-020-00136-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10494-020-00136-y

Keywords

Navigation