Skip to main content
Log in

Unsteady Secondary Motion of Pulsatile Turbulent Flow through a Double 90°-Bend Duct

  • Published:
Flow, Turbulence and Combustion Aims and scope Submit manuscript

Abstract

We investigate turbulent flow with highly pulsating axial velocity passing through a duct with both first and second bends. The time-dependent velocity fields downstream of the bends were measured using time-resolved stereo particle image velocimetry for the steady case (Reynolds number Re = 36,700) and the pulsatile case (Re = 37,800 and Womersley number α = 59.1). Proper orthogonal decomposition (POD) of the in-plane velocity data isolates the energetic structures of the secondary flow. The modes downstream of the first bend have a Dean motion (mode 0), single swirl (mode 1), and double swirl (mode 2), which agree with those of previous studies on steady turbulent flow. Downstream of the second bend, additional vortices appear in the modes owing to the secondary flow originating in the first bend. The modal structure of the pulsatile case is virtually the same as that of the steady case. To our knowledge, we are the first to find swirl switching in pulsatile flow, whereas the switching has been reported only for steady cases. We further conduct a time-frequency analysis via wavelet transformation onto the POD time coefficient, showing intermittency in energy of the mode associated with swirl switching.

.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

References

  1. Merati, P., Mirhashemi, A., Fajardo-Hansford, C., Liu, T.: Flow measurements in the exhaust system of a motorized engine. Int. J. Automot. Technol. 18(4), 563–569 (2017)

    Article  Google Scholar 

  2. Xu, J.: Flow analysis of engine intake manifold based on computational fluid dynamics. J. Phys. Conf. Ser. 916, 012043 (2017)

    Article  Google Scholar 

  3. Dean, W.R.: XVI. Note on the motion of fluid in a curved pipe. Philos. Mag. 4(20), 208–223 (1927)

    Article  Google Scholar 

  4. Dean, W.R.: LXXII. The stream-line motion of fluid in a curved pipe (second paper). Philos. Mag. 5(30), 673–695 (1928)

    Article  Google Scholar 

  5. Lyne, W.: Unsteady viscous flow in a curved pipe. J. Fluid Mech. 45(1), 13–31 (1971)

    Article  Google Scholar 

  6. Chang, L., Tarbell, J.: Numerical simulation of fully developed sinusoidal and pulsatile (physiological) flow in curved tubes. J. Fluid Mech. 161, 175–198 (1985)

    Article  MathSciNet  Google Scholar 

  7. Sudo, K., Sumida, M., Yamane, R.: Secondary motion of fully developed oscillatory flow in a curved pipe. J. Fluid Mech. 237, 189–208 (1992)

    Article  Google Scholar 

  8. van Wyk, S., Prahl Wittberg, L., Bulusu, K.V., Fuchs, L., Plesniak, M.W.: Non-Newtonian perspectives on pulsatile blood-analog flows in a 180° curved artery model. Phys. Fluids. 27, 071901 (2015)

    Article  Google Scholar 

  9. Najjari, M.R., Plesniak, M.W.: Evolution of vortical structures in a curved artery model with non-Newtonian blood-analog fluid under pulsatile inflow conditions. Exp. Fluids. 57, 100 (2016)

    Article  Google Scholar 

  10. Tunstall, M., Harvey, J.: On the effect of a sharp bend in a fully developed turbulent pipe-flow. J. Fluid Mech. 34(3), 595–608 (1968)

    Article  Google Scholar 

  11. Brücker, C.H.: A time-recording DPIV-study of the swirl-switching effect in a 90° bend flow. In: Proc. 8th Int Symp Flow Vis. Sorrento (NA), Italy, September 1-4, pp 171.1–171.6 (1998)

  12. Rütten, F., Schröder, W., Meinke, M.: Large-eddy simulation of low frequency oscillations of the Dean vortices in turbulent pipe bend flows. Phys. Fluids. 17, 035107 (2005)

    Article  Google Scholar 

  13. Sakakibara, J., Sonobe, R., Goto, H., Tezuka, H., Tada, H., Tezuka, K.: Stereo-PIV study of turbulent flow downstream of a bend in a round pipe. In: Proc. 14th Int Symp Flow Vis. EXCO Daegu, Korea, June 21–24 (2010)

  14. Hellström, L., Zlatinov, M., Cao, G., Smits, A.: Turbulent pipe flow downstream of a 90° bend. J. Fluid Mech. 735, R7 (2013)

    Article  Google Scholar 

  15. Carlsson, C., Alenius, E., Fuchs, L.: Swirl switching in turbulent flow through 90° pipe bends. Phys. Fluids. 27, 085112 (2015)

    Article  Google Scholar 

  16. Hufnagel, L., Canton, J., Örlü, R., Marin, O., Merzari, E., Schlatter, P.: The three-dimensional structure of swirl-switching in bent pipe flow. J. Fluid Mech. 835, 86–101 (2018)

    Article  MathSciNet  Google Scholar 

  17. Sakakibara, J., Machida, N.: Measurement of turbulent flow upstream and downstream of a circular pipe bend. Phys. Fluids. 24, 041702 (2012)

    Article  Google Scholar 

  18. Kalpakli Vester, A., Örlü, R., Alfredsson, P.H.: POD analysis of the turbulent flow downstream a mild and sharp bend. Exp. Fluids. 56, 57 (2015)

    Article  Google Scholar 

  19. Noorani, A., Schlatter, P.: Swirl-switching phenomenon in turbulent flow through toroidal pipes. Int. J. Heat Fluid Flow. 61(A), 108–116 (2016)

    Article  Google Scholar 

  20. Kalpakli, A., Örlü, R., Alfredsson, P.H.: Vortical patterns in turbulent flow downstream a 90° curved pipe at high Womersley numbers. Int. J. Heat Fluid Flow. 44, 692–699 (2013)

    Article  Google Scholar 

  21. Oki, J., Kuga, Y., Ogata, Y., Nishida, K., Yamamoto, R., Nakamura, K., Yanagida, H., Yokohata, H.: Stereo and time-resolved PIV for measuring pulsatile exhaust flow from a motorized engine. J. Fluid Sci. Technol. 13, 1 (2018)

    Article  Google Scholar 

  22. Chandran, K., Yearwood, T.: Experimental study of physiological pulsatile flow in a curved tube. J. Fluid Mech. 111, 59–85 (1981)

    Article  Google Scholar 

  23. Talbot, L., Gong, K.: Pulsatile entrance flow in a curved pipe. J. Fluid Mech. 127, 1–25 (1983)

    Article  Google Scholar 

  24. Timité, B., Castelain, C., Peerhossaini, H.: Pulsatile viscous flow in a curved pipe: effects of pulsation on the development of secondary flow. Int. J. Heat Fluid Flow. 31(5), 879–896 (2010)

    Article  Google Scholar 

  25. Benjamin, S., Roberts, C., Wollin, J.: A study of pulsating flow in automotive catalyst systems. Exp. Fluids. 33(5), 629–639 (2002)

    Article  Google Scholar 

  26. Hirata, K., Kubo, T., Hatanaka, Y., Matsushita, M., Shobu, K., Funaki, J.: An experimental study of amplitude and frequency effects upon a pulsating jet. J. Fluid Sci. Technol. 4(3), 578–589 (2009)

    Article  Google Scholar 

  27. Humphrey, J., Whitelaw, J., Yee, G.: Turbulent flow in a square duct with strong curvature. J. Fluid Mech. 103, 443–463 (1981)

    Article  Google Scholar 

  28. Oki, J., Ikeguchi, M., Ogata, Y., Nishida, K., Yamamoto, R., Nakamura, K., Yanagida, H., Yokohata, H.: Experimental and numerical investigation of a pulsatile flow field in an S-shaped exhaust pipe of an automotive engine. J. Fluid Sci. Technol. 12, 2 (2017)

    Article  Google Scholar 

  29. Prasad, A., Jensen, K.: Scheimpflug stereocamera for particle image velocimetry in liquid flows. Appl. Opt. 34(30), 7092–7099 (1995)

    Article  Google Scholar 

  30. Soloff, S.M., Adrian, R.J., Liu, Z.-C.: Distortion compensation for generalized stereoscopic particle image velocimetry. Meas. Sci. Technol. 8(12), 1441–1454 (1997)

    Article  Google Scholar 

  31. Keane, R.D., Adrian, R.J.: Optimization of particle image velocimeters: II. Multiple pulsed systems. Meas. Sci. Technol. 2(10), 963–974 (1991)

    Article  Google Scholar 

  32. Komai, Y., Tanishita, K.: Fully developed intermittent flow in a curved tube. J. Fluid Mech. 347, 263–287 (1997)

    Article  MathSciNet  Google Scholar 

  33. Boiron, O., Deplano, V., Pelissier, R.: Experimental and numerical studies on the starting effect on the secondary flow in a bend. J. Fluid Mech. 574, 109–129 (2007)

    Article  Google Scholar 

  34. Lumley, J.L.: The structure of inhomogeneous turbulent flows. In: Yaglom, A.M., Tatarski, V.I. (eds.) Atmospheric Turbulence and Wave Propagation, pp. 166–178. Nauka, Moscow (1967)

    Google Scholar 

  35. Semeraro, O., Bellani, G., Lundell, F.: Analysis of time-resolved PIV measurements of a confined turbulent jet using POD and Koopman modes. Exp. Fluids. 53, 1203–1220 (2012)

    Article  Google Scholar 

  36. Hellström, L.H.O., Zlatinov, M.B., Smits, A.J., Cao, G.: Turbulent pipe flow through a 90 bend. In: Proc. 7th Int Symp on Turbulence and Shear Flow Phenomena. Ottawa, Canada, July 28–31 (2011)

  37. Grossmann, A., Morlet, J.: Decomposition of hardy functions into square integrable wavelets of constant shape. SIAM J. Math. Anal. 15(4), 723–736 (1984)

    Article  MathSciNet  Google Scholar 

  38. Welch, P.: The use of fast Fourier transform for the estimation of power spectra: a method based on time averaging over short, modified periodograms. IEEE Trans. Audio Electroacoust. 15(2), 70–73 (1967)

    Article  Google Scholar 

Download references

Acknowledgments

This work was partially supported by a research grant from The Hiroshima University Education and Research Support Foundation. Mark Kurban, M. Sc., from Edanz Group (www.edanzediting.com/ac) edited a draft of this manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yoichi Ogata.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Oki, J., Kuga, Y., Yamamoto, R. et al. Unsteady Secondary Motion of Pulsatile Turbulent Flow through a Double 90°-Bend Duct. Flow Turbulence Combust 104, 817–833 (2020). https://doi.org/10.1007/s10494-019-00088-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10494-019-00088-y

Keywords

Navigation