Skip to main content
Log in

Flow Visualization Study of Stationary Fire Whirls just Downwind of Meter-Scale Turbulent Flames

  • Published:
Flow, Turbulence and Combustion Aims and scope Submit manuscript

Abstract

Laboratory experiments were conducted to determine whether stationary fire whirls just downwind of a meter-scale turbulent flame are the lowest part of the counter-rotating vortex pair (CVP) of the plume from the flame. Plumes from a turbulent pool fire and air flow around the fire were visualized. There are two types of stationary fire whirls: those that contain flames (FWflame) and those that do not (FWair). We determined that FWairis most likely the lowest part of the CVP and that FWflame is most likely generated by flames entering the lowest part of the CVP, swirling and increasing in length. FWairs and FWflames form alternately at the same location just downwind of the fuel pools. During the period when stationary fire whirls occur, the plume tilt angle from the vertical direction is smaller, and the variation in the plume tilt angle and flame trailing length is greater compared to all other periods. Flow visualization also showed that the characteristic semi-circular space (SCS) partly surrounded by the flame trailing downwind from both edges of the fuel pools is generated by the swirling wind of FWairs inside the SCS.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. Graham, H.E.: Fire whirlwinds. Bull. Am. Meteorol. Soc. 36(3), 99–103 (1955)

    Article  Google Scholar 

  2. USDA Forest Service: Accident prevention analysis report Indians fire, Los Padres National Forest, June 11, 2008. Pacific Southwest Region (2008)

  3. Pirsko, R., Sergius, L.M., Hickerson, C.W.: Causes and behavior of a tornadic fire-whirlwind. U. S. Forest Service Research Note PSW-61. Southwest Forest & Range Experiment Station. USDA Forest Service (1965)

  4. Terada, T.: Whirlwinds on September 1–2. The Imperial Earthquake Investigation Committee. Reports of the Imperial Earthquake Investigation Committee 100, 185–227 (in Japanese) (1925)

  5. Ebert, C.H.V.: Ebert, Hamburg’s firestorm weather. NFPA Q. 56, 253–260 (1963)

    Google Scholar 

  6. Forthofer, J.M., Goodrick, S.L: Review of vortices in wildland fire. J. Combust. 984363, 1–14 (2011)

    Article  Google Scholar 

  7. Countryman, C.M.: Fire whirls... why, when, and where. USDA Forest Service. Pacific Southwest Forest and Range Experiment Station (1971)

  8. Emmons, H.W., Ying, S.J.: The fire whirl. In: 111th Symposium (International) on Combustion, pp 475–488 (1967)

  9. Zhou, R., Wu, Z: Fire whirls due to surrounding flame sources and the influence of the rotation speed on the flame height. J. Fluid Mech. 583, 313–345 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  10. Hayashi, Y., Kuwana, K., Dobashi, R.: Influence of vortex structure on fire whirl behavior. In: Fire Safety Science-Proceedings 10th International Symposium, pp 671–679 (2011)

  11. Kuwana, K., Sekimoto, K., Minami, T., Tashiro, T., Saito, K.: Scale-model experiments of moving fire whirl over a line fire. Proc. Combust. Inst. 34(2), 2625–2631 (2013)

    Article  Google Scholar 

  12. Lei, J., Liu, N.: Flame precession of fire whirls: a further experimental study. Fire Saf. J. 79, 1–9 (2016)

    Article  Google Scholar 

  13. Wang, P., Liu, N, Hartl, K, Smits, A: Measurement of the flow field of fire whirl. Fire Technol. 52, 263–272 (2016)

    Article  Google Scholar 

  14. Wang, P., Liu, N., Bai, Y., Zhang, L., Satoh, K., Liu, X.: An experimental study on thermal radiation of fire whirl. Int. J. Wildland Fire 26, 693–705 (2017)

    Article  Google Scholar 

  15. Pinto, C., Viegas, D., Almeida, M., Raposo, J.: Fire whirls in forest fires: an experimental analysis. Fire Saf. J. 87, 37–48 (2017)

    Article  Google Scholar 

  16. Satoh, K., Yang, K.T.: Simulations of swirling fires controlled by channeled self-generated entrainment flows. In: Fire Safety Science - Proceedings of the 5th International Symposium, pp 201–212 (1997)

  17. Battaglia, F., McGrattan, K.B., Rehm, G.R., Baum, H.R.: Simulating fire whirls. Combust. Theor. Model. 4, 123–138 (2000)

    Article  MATH  Google Scholar 

  18. Chow, W.K., He, Z., Gao, Y: Internal fire whirls in a vertical shaft. J. Fire Sci. 29, 71–92 (2011)

    Article  Google Scholar 

  19. Satoh, K., Liu, N., Xie, X., Zhou, K., Chen, H., Wu, J., Lei, J., Lozano, J.S.: CFD study of huge oil depot fires - Generation of fire merging and fire whirl in arrayed oil tanks. In: Fire Safety Science - Proceedings of the 10th International Symposium, pp 693–705 (2011)

  20. Battaglia, F., Rehm, R.G., Baum, H.R: The fluid mechanics of fire whirls: an inviscid model. Phys. Fluids 12, 2859–2867 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  21. Chuah, K.H., Kushida, G.: The prediction of flame heights and flame shapes of small fire whirl. Proc. Combust. Inst. 31, 2599–2606 (2007)

    Article  Google Scholar 

  22. Chuah, K.H., Kuwana, K., Saito, K.: Modeling a fire whirl generated over a 5-cm-diameter methanol pool fire. Combust. Flame 156, 1828–1833 (2009)

    Article  Google Scholar 

  23. Klimenko, A.Y., Williams, F.A.: On the flame length in firewhirls with strong vorticity. Combust. Flame 160, 335–339 (2013)

    Article  Google Scholar 

  24. Countryman, C.M.: Project flambeau: an investigation of mass fire (1964–1967) Final report - Volume 1. USDA Forest Service, Pacific Southwest Forest and Range Experiment Station (1969)

  25. Adams, J.S., Williams, D.W., Tregellas-Williams, J.: Air velocity, temperature, and radiant-heat measurements within and around a large free-burning fire. In: Proceedings of the 14th International Symposium on Combustion, pp 1045–1052. The Combustion Institute (1972)

  26. Church, C.R., Snow, J.T., Dessens, J.: Intense atmospheric vortices associated with a 1000 MW fire. Bull. Am. Meteorol. Soc. 61, 682–694 (1980)

    Article  Google Scholar 

  27. Haines, D.A., Smith, M.C.: Three types of horizontal vortices observed in wildland mass and crown fires. J. Clim. Appl. Meteorol. 26, 1624–1637 (1987)

    Article  Google Scholar 

  28. Banta, R.M., Olivier, L.D., Holloway, E.T., Kropfli, R.A., Bartram, B.W., Cupp, R.E., Post, M.J.: Smoke column observations from two forest fires using Doppler lidar and Doppler radar. J. Appl. Meteorol. 31, 1328–1349 (1992)

    Article  Google Scholar 

  29. McRae, D.J., Flannigan, M.D.: Development of large vortices on prescribed fires. Can. J. For. Res. 20, 1878–1887 (1990)

    Article  Google Scholar 

  30. Soma, S., Saito, K.: Reconstruction of fire whirls using scale models. Combust. Flame 86, 269–284 (1991)

    Article  Google Scholar 

  31. Kuwana, K., Sekimoto, K, Saito, K, Williams, F. A.: Scaling fire whirls. Fire Saf. J. 43, 252–257 (2008)

    Article  Google Scholar 

  32. Shinohara, M., Matsushima, S.: Formation of fire whirls: experimental verification that a counter-rotating vortex pair is a possible origin of fire whirls. Fire Saf. J. 54, 144–153 (2012)

    Article  Google Scholar 

  33. Fric, T.F., Roshko, A.: Vortical structure in the wake of a transverse jet. J. Fluid Mech. 279, 1–47 (1994)

    Article  Google Scholar 

  34. Kelso, R.M., Lim, T.T., Perry, A.E.: An experimental study of round jets in crossfow. J. Fluid Mech. 306, 111–144 (1996)

    Article  Google Scholar 

  35. Marzouk, Y.M., Ghoniem, A.F.: Vorticity structure and evolution in a transverse jet. J. Fluid Mech. 575, 267–305 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  36. Haines, D.A., Smith, M.C.: Wind tunnel generation of horizontal roll vortices over a differentially heated surface. Nature 306, 351–352 (1983)

    Article  Google Scholar 

  37. Cunningham, P., Goodrick, S.L, Hussaini, M.Y., Linn, R.R.: Coherent vortical structures in numerical simulations of buoyant plumes from wildland fires. Int. J. Wildland Fire 14, 61–75 (2005)

    Article  Google Scholar 

  38. Shinohara, M., Matsushima, S.: Laboratory experiments on the effects of wind direction on behavior of fire whirls downwind of fire. In: 11th Symposium on Fire and Forest Meteorology, 6.6 (2015)

  39. Goldstein, R.J.: Fluid Mechanics Measurements. Hemisphere Publishing Corporation, Washington (1983)

    Google Scholar 

  40. Welker, J.R., Sliepcevich, C.M.: Bending of wind-blown flames from liquid pools. Fire Technol. 2, 127–135 (1966)

    Article  Google Scholar 

  41. Hu, L., Liu, S., Ris, J. L., Wu, L.: A new mathematical quantification of wind-blown flame tilt angle of hydrocarbon pool fires with a new global correlation model. Fuel 106, 730–736 (2013)

    Article  Google Scholar 

  42. Blinov, V.I., Khudyakov, G.N.: Diffusion burning of liquids. Izdatel’stvo Akdademii Nauk SSSR, Moscow, Translated by Research Information Service, Div. of Pergamon International Corp. N.Y. (1961)

  43. Thurston, W., Tory, K.J., Kepert, J.D., Fawcett, R.J. B.: The effects of fire-plume dynamics on the lateral and longitudinal spread of long-range spotting. In: Proceedings of the the Research Forum at the Bushfire and Natural Hazards CRC & AFAC Conference, pp 1–9 (2015)

  44. Jiang, P., Lu, S.: Pool fire mass burning rate and flame tilt angle under crosswind in open space. Procedia Eng. 135, 261–274 (2016)

    Article  Google Scholar 

  45. Hu, L., Kuang, C., Zhong, X., Ren, F., Zhang, X, Ding, H.: An experimental study on burning rate and flame tilt of optical-thin heptane pool fires in cross flows. Proc. Combust. Inst. 36, 3089–3096 (2017)

    Article  Google Scholar 

  46. Woods, J.A.R., Fleck, B.A., Kostiuk, L.W.: Effects of transverse air flow on burning rates of rectangular methanol pool fires. Combust. Flame 146, 379–390 (2006)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Masahiko Shinohara.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

captions of movies

(MPG 8.76 MB)

captions of movies

(MPG 9.51 MB)

captions of movies

(MPG 9.64 MB)

captions of movies

(MPG 5.20 MB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shinohara, M., Matsushima, S. Flow Visualization Study of Stationary Fire Whirls just Downwind of Meter-Scale Turbulent Flames. Flow Turbulence Combust 102, 313–330 (2019). https://doi.org/10.1007/s10494-018-9987-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10494-018-9987-2

Keywords

Navigation