Skip to main content
Log in

Near-Wall Stress Balance in Front of a Wall-Mounted Cylinder

  • Published:
Flow, Turbulence and Combustion Aims and scope Submit manuscript

Abstract

The stress balance in the near-wall flow in front of a cylinder mounted on a flat plate at moderate Reynolds number is investigated by applying highly resolved Large-Eddy Simulation (LES). The flow around wall-mounted bluff bodies is subject of research due to its wide relevance for engineering applications. However, the structure of the vortex system in front of such a bluff body is complex, bears strong velocity and pressure gradients in each spatial direction and has rich dynamics. Furthermore, the vortex system is located close to the investigated flat bottom wall (Dargahi, Exp. Fluids 8(1-2):1–12, 1989; Devenport and Simpson, J. Fluid Mech. 210:23–55, 1990). Thus, classical models for the treatment of the near-wall flow based on the logarithmic law of the wall or a power law cannot be expected to suffice in such kind of flow (Pope 2011). This paper assesses which contributors to the stress balance have significant influence on the balances residual and thus have to be considered by an approach to model the investigated near-wall flow. To do so, the momentum equation in streamwise direction is integrated in wall-normal direction and applied to the results gained from the LES. The evaluation of the stress balance along four selected wall-normal profiles indicates that the significance of each single term depends on where the profile is located. Outside the viscous layer, no term except the viscous stresses can be neglected in general. The amplitude of the pressure gradient as well as horizontal gradients of mean and fluctuating velocity are multiples of the estimated wall shear stress. Wall models not including a spatial approach are therefore most likely to fail in such kind of flow.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

Notes

  1. Balaras et al. [22] investigated a plane channel flow, flow through a square duct and a rotating channel.

References

  1. Devenport, W.J., Simpson, R.L.: Time-dependent and time-averaged turbulence structure near the nose of a wing-body junction. J. Fluid Mech. 210, 23–55 (1990)

    Article  Google Scholar 

  2. Apsilidis, N., Diplas, P., Dancey, C.L., Bouratsis, P.: Time-resolved flow dynamics and reynolds number effects at a wall-cylinder junction. J. Fluid Mech. 776, 475–511 (2015)

    Article  Google Scholar 

  3. Escauriaza, C., Sotiropoulos, F.: Reynolds number effects on the coherent dynamics of the turbulent horseshoe vortex system. Flow Turbul. Combust. 86(2), 231–262 (2011). https://doi.org/10.1007/s10494-010-9315-y

    Article  MATH  Google Scholar 

  4. Martinuzzi, R., Tropea, C.: The flow around surface-mounted, prismatic obstacles placed in a fully developed channel flow. Trans. ASME J. Fluids Engrg. 115, 85–92 (1993)

    Article  Google Scholar 

  5. Paik, J., Escauriaza, C., Sotiropoulos, F.: On the bimodal dynamics of the turbulent horseshoe vortex system in a wing-body junction. Phys. Fluids 19(045), 107 (2007)

    MATH  Google Scholar 

  6. Kawamura, T., Hiwade, M., Hibino, T., Mabuchi, I., Kumada, M.: Flow around a finite circular cylinder on a flat plate: Cylinder height greater than turbulent boundary layer thickness. Bull. JSME 27(232), 2142–2151 (1984). https://doi.org/10.1299/jsme1958.27.2142

    Article  Google Scholar 

  7. Palau-Salvador, G., Stoesser, T., Fröhlich, J., Kappler, M., Rodi, W.: Large eddy simulations and experiments of flow around finite-height cylinders. Flow Turbul. Combust. 84(2), 239–275 (2010). https://doi.org/10.1007/s10494-009-9232-0

    Article  MATH  Google Scholar 

  8. Krajnović, S.: Flow around a tall finite cylinder explored by large eddy simulation. J. Fluid Mech. 676, 294–317 (2011). https://doi.org/10.1017/s0022112011000450

    Article  MathSciNet  MATH  Google Scholar 

  9. Melville, B.W., Coleman, S.E.: Bridge Scour. Water Resources Publications, LLC, Highlands Ranch, USA (2000)

  10. Dargahi, B.: The turbulent flow field around a circular cylinder. Exp. Fluids 8 (1-2), 1–12 (1989). https://doi.org/10.1007/bf00203058

    Article  Google Scholar 

  11. Chang, W.Y., Constantinescu, G., Lien, H.C., Tsai, W.F., Lai, J.S., Loh, C.H.: Flow structure around bridge piers of varying geometrical complexity. J. Hydraul. Eng. 139(8), 812–826 (2013)

    Article  Google Scholar 

  12. Rivier, A., Bennis, A.C., Pinon, G., Magar, V., Gross, M.: Parameterization of wind turbine impacts on hydrodynamics and sediment transport. Ocean Dyn. 66, 1285–1299 (2016). https://doi.org/10.1007/s10236-016-0983-6

    Article  Google Scholar 

  13. Tseng, M.H., Yen, C.L., Song, C.C.S.: Computation of three-dimensional flow around square and circular piers. Int. J. Numer. Meth. Fluids 34(3), 207–227 (2000)

    Article  MATH  Google Scholar 

  14. Schanderl, W., Manhart, M.: Reliability of wall shear stress estimations of the flow around a wall-mounted cylinder. Comput. Fluids 128, 16–29 (2016)

    Article  Google Scholar 

  15. Schanderl, W., Jenssen, U., Strobl, C., Manhart, M.: The structure and the budget of turbulent kinetic energy in front of a wall-mounted cylinder. J. Fluid Mech. 827, 285–321 (2017). https://doi.org/10.1017/jfm.2017.486

    Article  MathSciNet  Google Scholar 

  16. Roulund, A., Sumer, B.M., Fredsoe, J., Michelsen, J.: Numerical and experimental investigation of flow and scour around a circular pile. J. Fluid Mech. 534, 351–401 (2005). https://doi.org/10.1017/s0022112005004507

    Article  MathSciNet  MATH  Google Scholar 

  17. Grötzbach, G.: Numerical simulation of turbulent temperature fluctuations in liquid metals. Int. J. Heat Mass Transf. 24(3), 475–490 (1981)

    Article  Google Scholar 

  18. Werner, H.: Grobstruktursimulation der turbulenten Strömung über eine querliegende Rippe in einem Plattenkanal bei hoher Reynoldszahl. Ph.D. thesis. Technische Universität München, München (1991)

    Google Scholar 

  19. Manhart, M., Peller, N., Brun, C.: Near-wall scaling for turbulent boundary layers with adverse pressure gradient. Theor. Comput. Fluid Dyn. 22(3-4), 243–260 (2008). https://doi.org/10.1007/s00162-007-0055-0

    Article  MATH  Google Scholar 

  20. Pope, S.B.: Turbulent flows. Cambridge University Press, Cambridge (2011)

    MATH  Google Scholar 

  21. Knopp, T., Schanz, D., Schröder, A., Dumitra, M., Cierpka, C., Hain, R., Kähler, C.J.: Experimental investigation of the log-law for an adverse pressure gradient turbulent boundary layer flow at r e 𝜃 = 10000. Flow Turbul. Combust. 92 (1), 451–471 (2014). https://doi.org/10.1007/s10494-013-9479-3

    Article  Google Scholar 

  22. Balaras, E., Benocci, C., Piomelli, U.: Two-layer approximate boundary conditions for large-eddy simulations. AIAA J. 34(6), 1111–1119 (1996)

    Article  MATH  Google Scholar 

  23. Chen, Z.L., Hickel, S., Devesa, A., Berland, J., Adams, N.A.: Wall modeling for implicit large-eddy simulation and immersed-interface methods. Theor. Comput. Fluid Dyn. 28(1), 1–21 (2014). https://doi.org/10.1007/s00162-012-0286-6

    Article  Google Scholar 

  24. Piomelli, U., Balaras, E.: Wall-layer models for large-eddy simulations. Annu. Rev. Fluid Mech. 34(1), 349–374 (2002). https://doi.org/10.1146/annurev.fluid.34.082901.144919

    Article  MathSciNet  MATH  Google Scholar 

  25. Dey, S., Barbhuiya, A.K.: Turbulent flow field in a scour hole at a semicircular abutment. Can. J. Civ. Eng. 32(1), 213–232 (2005). https://doi.org/10.1139/l04-082

    Article  Google Scholar 

  26. Graf, W., Istiarto, I.: Flow pattern in der scour hole around a cylinder. J. Hydraul. Res. 40(1), 13–20 (2002)

    Article  Google Scholar 

  27. Melville, B.W., Raudkivi, A.J.: Flow characteristics in local scour at bridge piers. J. Hydraul. Res. 15(4), 373–380 (1977). https://doi.org/10.1080/00221687709499641

    Article  Google Scholar 

  28. Jenssen, U., Schanderl, W., Manhart, M.: Cylinder wall junction flow: particle image velocimetry and large eddy simulation. In: ERCOFTAC symposium on engineering turbulence modelling and measurements (2016)

  29. Manhart, M., Tremblay, F., Friedrich, R.: MGLET: a parallel code for efficient DNS and LES of complex geometries. In: Jenssen, C.B., Kvamdal, T., Andersson, H.I., Pettersen, B., Ecer, A., Periaux, J., Satofuka, N., Fox, P. (eds.) Parallel Computational Fluid Dynamics 2000. Elsevier Science B.V., Amsterdam (2001)

  30. Peller, N.: Numerische Simulation turbulenter Strömungen mit Immersed Boundaries. Ph.D. thesis, Technische Universität München (2010)

  31. Peller, N., Duc, A.L., Tremblay, F., Manhart, M.: High-order stable interpolations for immersed boundary methods. Int. J. Numer. Methods Fluids 52, 1175–1193 (2006)

    Article  MATH  Google Scholar 

  32. Manhart, M.: A zonal grid algorithm for DNS of turbulent boundary layers. Comput. Fluids 33(3), 435–461 (2004)

    Article  MATH  Google Scholar 

  33. Nicoud, F., Ducros, F.: Subgrid-scale stress modelling based on the square of the velocity gradient tensor. Flow Turbul. Combust. 62(3), 183–200 (1999). https://doi.org/10.1023/a:1009995426001

    Article  MATH  Google Scholar 

  34. Breuer, M., Peller, N., Rapp, C., Manhart, M.: Flow over periodic hills – Numerical and experimental study in a wide range of Reynolds numbers. Comput. Fluids 38(2), 433–457 (2009). https://doi.org/10.1016/j.compfluid.2008.05.002

    Article  MATH  Google Scholar 

  35. Gallardo, J.P., Andersson, H.I., Pettersen, B.: Turbulent wake behind a curved circular cylinder. J. Fluid Mech. 742, 192–229 (2014). https://doi.org/10.1017/jfm.2013.622

    Article  Google Scholar 

  36. Manhart, M.: Vortex Shedding from a Hemisphere in a Turbulent Boundary Layer. Theor. Comput. Fluid Dyn. 12(1), 1–28 (1998). https://doi.org/10.1007/s001620050096

    Article  MATH  Google Scholar 

  37. Fernholz, H.H., Finley, P.J.: The incompressible zero-pressure-gradient turbulent boundary layer: An assessment of the data. Prog. Aerosp. Sci. 32 (4), 245–311 (1996). https://doi.org/10.1016/0376-0421(95)00007-0

    Article  Google Scholar 

  38. Schanderl, W., Manhart, M., Link, O.: Discussion of the impact of pressure fluctuations on local scouring. In: River Sedimentation - Proceedings of the 13th International Symposium on River Sedimentation, ISRS 2016, pp. 394–401 (2017)

Download references

Funding

The authors gratefully acknowledge the financial support of the DFG under grant no. MA2062/11. Computing time was granted by the Leibniz Computing Center (LRZ) of the Bavarian Academy of Sciences through grant no. pr84gi. No further funding was received.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael Manhart.

Ethics declarations

Conflict of interests

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Schanderl, W., Jenssen, U. & Manhart, M. Near-Wall Stress Balance in Front of a Wall-Mounted Cylinder. Flow Turbulence Combust 99, 665–684 (2017). https://doi.org/10.1007/s10494-017-9865-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10494-017-9865-3

Keywords

Navigation