Skip to main content
Log in

Modelling the Plasma-actuator-related Turbulence Production in RANS Closures by Reference to Complementary Experimental Investigations

  • Published:
Flow, Turbulence and Combustion Aims and scope Submit manuscript

Abstract

Complementary experimental and computational study on flow separation delay at a NACA 0015 airfoil affected by a DBD (Dielectric-Barrier-Discharge) plasma actuator is presented. The effect of the DBD plasma-actuator on the flow development towards its appropriate control is accounted through a relevant body force representing a source term in the equation of motion. The spatial distribution of the force is calculated from the time-averaged properties of the experimentally obtained (by particle image velocimetry - PIV) velocity field by applying the Reynolds-Averaged Navier-Stokes equations. The study focusses in particular on the specific plasma-related turbulence production in the equations governing the Reynolds-stress tensor. Prior to studying the airfoil configuration the computational determination of the body force and corresponding turbulence generation rate is analyzed in a wall jet flow induced by the DBD plasma actuator.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

Similar content being viewed by others

References

  1. Albrecht, T., Weier, T., Gerbeth, G., Metzkes, H., Stiller, J.: A method to estimate the planar, instantaneous body force distribution from velocity field measurements. Phys. Fluids 23(2), 021702 (2011)

    Article  Google Scholar 

  2. Benard, N., Moreau, E.: Capabilities of the dielectric barrier discharge plasma actuator for multi-frequency excitations. J. Phys. D. Appl. Phys. 43(14), 145201 (2010)

    Article  Google Scholar 

  3. Benard, N., Moreau, E.: On the Vortex Dynamic of Airflow Reattachment Forced by a Single Non-thermal Plasma Discharge Actuator. Flow Turbul. Combust. 87(1), 1–13 (2011)

    Article  MATH  Google Scholar 

  4. Benard, N., Debien, A., Moreau, E.: Time-dependent volume force produced by a non-thermal plasma actuator from experimental velocity field. J. Phys. D. Appl. Phys. 46(24), 245201 (2013)

    Article  Google Scholar 

  5. Benard, N., Moreau, E.: Electrical and mechanical characteristics of surface AC dielectric barrier discharge plasma actuators applied to airflow control. Exp. Fluids 55, 11 (2014)

    Article  Google Scholar 

  6. Boeuf, J.P., Lagmich, Y., Unfer, T., Callegari, T., Pitchford, L.C.: Electrohydrodynamic force in dielectric barrier discharge plasma actuators. J. Phys. D. Appl. Phys. 40, 652–662 (2007)

    Article  Google Scholar 

  7. Cooper, D., Jackson, D.C., Launder, B.E., Liao, G.X.: Impinging jet studies for turbulence model assessment I. Flow-field experiments. Int. J. Heat and Mass Transfer 36(10), 2675–2684 (1993)

    Article  Google Scholar 

  8. Corke, T.C., Post, M.L.: Overview of plasma flow control: concepts, optimization, and applications. AIAA Paper No. 2005-563, 43rd AIAA Aerospace Sciences Meeting and Exhibit Reno, NV, USA, January 10–13 (2005)

  9. Debien, A., Benard, N., David, L., Moreau, E.: Unsteady aspect of the electrohydrodynamic force produced by surface dielectric barrier discharge actuators. Appl. Phys. Lett. 100(1), 013901 (2012)

    Article  Google Scholar 

  10. Font, G.I.: Boundary-Layer Control with Atmospheric Plasma Discharges. AIAA J. 44, 1572–1578 (2006)

    Article  Google Scholar 

  11. Forte, M., Jolibois, J., Pons, J., Moreau, E., Touchard, G., Cazalens, M.: Optimization of a dielectric barrier discharge actuator by stationary and non-stationary measurements of the induced flow velocity: application to airflow control. Exp. Fluids 43(6), 917–928 (2007)

    Article  Google Scholar 

  12. Greenblatt, D., Wygnanski, I.J.: The control of flow separation by periodic excitation. Prog. Aerosp. Sci. 36(7), 487–545 (2000)

    Article  Google Scholar 

  13. Jacob, J.D., Ramakumar, K., Anthony, R., Rivir, R.: Control of laminar and turbulent shear flows using plasma actuators. In: Proceedings of the 4th International Symposium on Turbulence and Shear Flow Phenomena, pp 27–29 (2005)

  14. Jakirlić, S., Hanjalić, K.: A new approach to modelling near-wall turbulence energy and stress dissipation. J. Fluid Mech. 439, 139–166 (2002)

    MATH  Google Scholar 

  15. Jakirlić, S., Maduta, R.: Extending the bounds of ‘steady’ RANS closures: toward an instability-sensitive Reynolds stress model. Int. J. Heat Fluid Flow 51, 175–194 (2015)

    Article  Google Scholar 

  16. Jayaraman, B., Shyy, W.: Modeling of dielectric barrier discharge-induced fluid dynamics and heat transfer. Prog. Aerosp. Sci. 44, 139–191 (2008)

    Article  Google Scholar 

  17. Jolibois, J., Forte, M., Moreau, E.: Application of an AC barrier discharge actuator to control airflow separation above a NACA 0015 airfoil: optimization of the actuation location along the chord. J. Electrost. 66(9), 496–503 (2008)

    Article  Google Scholar 

  18. Kenjereṡ, S., Hanjalić, K.: On the implementation of effects of Lorentz force in turbulence closure models. Int. J. Heat Fluid Flow 21(3), 329–337 (2000)

    Article  Google Scholar 

  19. Kenjereṡ, S., Hanjalić, K., Bal, D.: A direct-numerical-simulation-based second-moment closure for turbulent magnetohydrodynamic flows. Phys. Fluids (1994-present) 16(5), 1229–1241 (2004)

    Article  MATH  Google Scholar 

  20. Kotsonis, M.: Diagnostics for characterisation of plasma actuators. Meas. Sci. Technol. 26(9), 092001 (2015)

    Article  Google Scholar 

  21. Kriegseis, J., Schwarz, C., Tropea, C., Grundmann, S.: Velocity-information-based force-term estimation of dielectric barrier discharge plasma actuators. J. Phys. D. Appl. Phys. 46, 055202 (2013)

  22. Kriegseis, J., Maden, I., Schwarz, C., Tropea, C., Grundmann, S.: Addendum to Velocity-information-based force-term estimation of dielectric barrier discharge plasma actuators. J. Phys. D. Appl. Phys. 48, 329401 (2015)

    Article  Google Scholar 

  23. Launder, B.E.: On the effects of a gravitational field on the turbulent transport of heat and momentum. J. Fluid Mech. 67, 569–581 (1975)

    Article  Google Scholar 

  24. Maden, I., Maduta, R., Kriegseis, J., Jakirlić, S., Schwarz, C., Grundmann, S., Tropea, C.: Experimental and computational study of the flow induced by a plasma actuator. Int. J. Heat Fluid Flow 41, 80–89 (2013)

    Article  Google Scholar 

  25. Maden, I., Barckmann, K., Kriegseis, J., Jakirlić, S., Grundmann, S.: Evaluating Force Fields induced by a Plasma Actuator using the Reynolds-Averaged Navier Stokes Equation, AIAA Paper No. 2104-0326, 52nd AIAA Aerospace Sciences Meeting, National Harbor, MD, USA, January 13–17 (2014)

  26. Murphy, J.P., Kriegseis, J., Lavoie, P.: Scaling of maximum velocity, body force and power consumption of dielectric barrier discharge plasma actuators via particle image velocimetry. J. Appl. Phys. 113(24), 243301 (2013)

  27. Shyy, W., Jayaraman, B., Andersson, A.: Modeling of glow discharge-induced fluid dynamics. J. Appl. Phys. 92, 6434 (2002)

    Article  Google Scholar 

  28. Suzen, Y.B., Huang, P.G., Jacob, J.D., Asphis, D.E.: Numerical Simulations of Plasma Based Flow Control Applications, AIAA Paper No. 2005-4633, 35th Fluid Dynamics Conference and Exhibit June 6-9, 2005, Toronto, Ontario Canada (2005)

  29. Wilke, B.: Aerodynamische Strömungssteuerung mittels dielektrischen Barriereentladungs-Plasmaaktuatoren. PhD Thesis, DLR Göttingen, Germany (2009)

Download references

Acknowledgments

The authors gratefully acknowledge financial support by the German Research Foundation (Deutsche Forschungsgemeinschaft) under grant EXC 259.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Jakirlić.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Maden, I., Maduta, R., Hofmann, J. et al. Modelling the Plasma-actuator-related Turbulence Production in RANS Closures by Reference to Complementary Experimental Investigations. Flow Turbulence Combust 97, 1047–1069 (2016). https://doi.org/10.1007/s10494-016-9779-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10494-016-9779-5

Keywords

Navigation