Skip to main content
Log in

Study of the Turbulent Velocity Field in the Near Wake of a Bluff Body

  • Published:
Flow, Turbulence and Combustion Aims and scope Submit manuscript

Abstract

An experimental characterization of the turbulent flow structure formed downstream of a vertically mounted circular bluff body is performed. Three components of an instantaneous velocity field are measured using the stereo particle image velocimetry technique at the symmetry plane. The average velocity and the turbulent properties are analyzed. The results indicate a recirculation zone consisting of a toroidal vortex with similar dimensions for all Reynolds numbers. The largest turbulent fluctuations are found at the stagnation point region. The observed anisotropy of the normal Reynolds stress components is associated with the stagnation point flow, whereas the cross-correlation component extreme occurs in high strain rate regions. An analysis of the Reynolds tensor anisotropy using the Lumley triangle is performed, revealing that the largest departures from isotropy occur at high shear regions and also within the vortex.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Masri, A.R., Dibble, R.W., Barlow, R.S.: The structure of turbulent nonpremixed flames revealed by Raman-Rayleigh-LIF measurements. Prog. Energy Combust Sci. 22(4), 307–362 (1996). doi:10.1016/S0360-1285(96)00009-3

    Article  Google Scholar 

  2. Egúsquiza, J.C., Figueira da Silva, L.F.: Turbulent non-premixed ethanol–air flame experimental study using laser diagnostics. J. Braz. Soc. Mech. Sci. Eng. 35(3), 177–188 (2013). doi:10.1007/s40430-013-0017-y

    Article  Google Scholar 

  3. Caetano, N.R., Figueira da Silva, L.F.: A comparative experimental study of turbulent non premixed flames stabilized by a bluff-body burner. Exp. Therm. Fluid Sci. 63, 20–33 (2015). doi:10.1016/j.expthermflusci.2015.01.006

    Article  Google Scholar 

  4. Andrade, F.O., Figueira da Silva, L.F., Mura, A.: Large eddy simulation of turbulent premixed combustion at moderate Damköhler numbers stabilized in a high-speed flow. Combust. Sci. Technol. 183(7), 645–664 (2011). doi:10.1080/00102202.2010.536600

    Article  Google Scholar 

  5. Celis, C., Figueira da Silva, L.F.: On mass consistency techniques used in LES/PDF simulations of turbulent reacting flows. In: 8th Mediterr. Combust. Symp, Izmir (2013)

  6. Vedovoto, J.M., Silveira Neto, A., Figueira da Silva, L.F., Mura, A.: Influence of synthetic inlet turbulence on the prediction of low Mach number flows. Comput. Fluid 106, 135–153 (2015). doi:10.1016/j.compfluid.2014.09.046

    Article  MathSciNet  Google Scholar 

  7. Durao, D.F.G., Whitelaw, J.H.: Velocity characteristics of the flow in the near wake of a disk. J. Fluid Mech. 85(2), 369–385 (1978). doi:10.1017/s0022112078000683

    Article  Google Scholar 

  8. Huang, R.F., Lin, C.L.: Velocity field of a bluff-body wake. J. Wind Eng. Ind. Aerodyn. 85(1), 31–45 (2000). doi:10.1016/S0167-6105(99)00117-8

    Article  Google Scholar 

  9. Braza, M., Perrin, R., Hoarau, Y.: Turbulence properties in the cylinder wake at high Reynolds number. J. Fluids Struct. 22(6–7), 757–771 (2006). doi:10.1016/j.jfluidstructs.2006.04.021

    Article  Google Scholar 

  10. Bitter, M., Scharnowski, S., Hain, R., Kahler, C.J.: High-repetition-rate PIV investigations on a generic rocket model in sub- and supersonic flows. Exp. Fluids 50(4), 1019–1030 (2011). doi:10.1007/s00348-010-0988-8

    Article  Google Scholar 

  11. Pope, S.B.: Turbulent Flows. Cambridge University Press, Cambridge (2000)

    Book  MATH  Google Scholar 

  12. Chassaing, P.: Turbulence en mécanique des fluides: analyse du phénomène en vue de sa modélisation à l’usage de l’ingénieu. Cépaduès – éditions, Paris (2000)

  13. Uberoi, M.S., Freymuth, P.: Turbulent energy balance and spectra of the axisymmetric wake. Phys. Fluids 13, 2205–2210 (1970). doi:10.1063/1.1693225

    Article  Google Scholar 

  14. Redfor, J.A., Castro, I.P., Coleman, G.N.: On the universality of turbulent axisymmetric wakes. J. Fluid Mech. 710, 419–452 (2012). doi:10.1017/jfm.2012.371

    Article  MathSciNet  MATH  Google Scholar 

  15. Herrin, J.L., Dutton, J.C.: Supersonic base flow experiments in the near wake of a cylindrical afterbody. AIAA J. 32(1), 77–83 (1994). doi:10.2514/3.11953

    Article  Google Scholar 

  16. Antonia, R.A., Zhou, T., Romano, G.P.: Small-scale turbulence characteristics of two-dimensional bluff body wakes. J. Fluid Mech. 459, 67–92 (2002). doi:10.1017/S0022112002007942

    Article  MathSciNet  MATH  Google Scholar 

  17. Thiesset, F., Danaila, L., Antonia, R.A.: Dynamical effect of the total strain induced by the coherent motion on local isotropy in a wake. J. Fluid Mech. 720, 393–423 (2013). doi:10.1017/jfm.2013.11

    Article  MATH  Google Scholar 

  18. Choi, K., Lumley, J.L.: The return to isotropy of homogeneous turbulence. J. Fluid Mech. 436, 59–84 (2001). doi:10.1017/S002211200100386X

    Article  MATH  Google Scholar 

  19. Derksen, J.J., Doelman, M.S., Van den Akker, H.E.: Three-dimensional LDA measurements in the impeller region of a turbulently stirred tank. Exp. Fluids 27(6), 522–532 (1999). doi:10.1007/s003480050376

    Article  Google Scholar 

  20. Hartmann, H., Derksen, J.J., Montavon, C., Pearson, J., Hamill, I.S., van den Akker, H.E.A.: Assessment of large eddy and RANS stirred tank simulations by means of LDA. Chem. Eng. Sci. 59(12), 2419–2432 (2004). doi:10.1016/j.ces.2004.01.065

    Article  Google Scholar 

  21. Raffel, M., Willert, C., Wereley, S., Kompenhans, J.: Particle Image Velocimetry: a Practical Guide. Springer, Berlin (2007)

    Google Scholar 

  22. Roesgen, T.: Optimal subpixel interpolation in particle image velocimetry. Exp. Fluids 35(3), 252–256 (2003). doi:10.1007/s00348-003-0627-8

    Article  Google Scholar 

  23. Adrian, R., Westerweel, J.: Particle Image Velocimetry. Cambridge University Press, New York (2011)

    MATH  Google Scholar 

  24. Sciacchitano, A., Neal, D.R., Smith, B.L., Warner, S.O., Vlachos, P.P., Wieneke, B., Scarano, F.: Collaborative framework for PIV uncertainty quantification: comparative assessment of methods. Meas. Sci. Technol. 26(7), 074004 (2014). doi:10.1088/0957-0233/26/7/074004

    Article  Google Scholar 

  25. Benedict, L.H., Gould, R.D.: Towards better uncertainty estimates for turbulence statistics. Exp. Fluids 22(2), 129–136 (1996). doi:10.1007/s003480050030

    Article  Google Scholar 

  26. Lazar, E., DeBlauw, B., Glumac, N., Dutton, C., Elliott, G.: A practical approach to PIV uncertainty analysis. In: 27th AIAA Aerodynamic Meas. Technol. Ground Testing Conf., Chicago (2010)

  27. Melling, A.: Tracer particles and seeding for particle image velocimetry. Meas. Sci. Technol. 8(12), 1406–1416 (1997). doi:10.1088/0957-0233/8/12/005

    Article  Google Scholar 

  28. Durbin, P.A., Pettersson Reif, B.A.: Statistical Theory and Modeling for Turbulent Flows. Wiley, Chichester (2011)

    MATH  Google Scholar 

  29. Lumley, J.L.: Computational modelling of turbulent flows. Adv. Appl. Mech. 18, 123–176 (1978). doi:10.1016/S0065-2156(08)70266-7

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Juan José Cruz Villanueva.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cruz Villanueva, J.J., Figueira da Silva, L.F. Study of the Turbulent Velocity Field in the Near Wake of a Bluff Body. Flow Turbulence Combust 97, 715–728 (2016). https://doi.org/10.1007/s10494-016-9709-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10494-016-9709-6

Keywords

Navigation