Skip to main content
Log in

Multi-Technique Analysis of Soot Reactivity from Conventional and Paraffinic Diesel Fuels

  • Published:
Flow, Turbulence and Combustion Aims and scope Submit manuscript

Abstract

A 2.0 L, 4-cylinder, turbocharged, common rail diesel engine was used for generating soot samples. Three fuels were tested: a “first fill” diesel fuel, a gas-to-liquid fuel (GTL) and a hydrotreated fuel derived from vegetable oils (HVO). A stationary low-load operating mode (1667 rpm and 78 Nm) was selected for testing, and some modifications in the injection process (strategy, timing and pressure) were evaluated experimentally to assess their influence in the soot reactivity. The collected soot samples were characterized using a thermogravimetric analyzer (TGA), a differential scanning calorimeter (DSC), a diffuse reflectance infrared Fourier transform spectrometer (DRIFTS) and a surface area analyzer. All techniques anticipated that HVO and GTL soot samples are more reactive (i.e. show higher potential to be oxidized at lower temperatures leading to more efficient regeneration processes in a Diesel Particle Filter – DPF) compared to diesel soot. Additionally, the four characterization techniques showed the same tendencies when analyzing the effect of the engine operating parameters. In view of the results, the paraffinic fuels – HVO and GTL – here tested confirm their promising perspective for future use in automotive diesel engines, while some guides are proposed to enhance the soot reactivity via calibration of engine operating parameters.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Dockery, D.W., Schwartz, J., Spengler, J.D.: Air pollution and daily mortality: associations with particulates and acid aerosols. Environ. Res. 59, 362–373 (1992)

    Article  Google Scholar 

  2. Pourazar, J., Frew, A.J., Blomberg, A., Helleday, R., Kelly, F.J., Wilson, S.: Diesel exhaust exposure enhances the expression of IL-13 in the bronchial epithelium of healthy subjects. Respir. Med. 98, 821–825 (2004)

    Article  Google Scholar 

  3. Goyal, P., Jaiswal, N., Kumar, A., Dadoo, J.K., Dwarakanath, M.: Air quality impact assessment of NOx and PM due to diesel vehicles in Delhi. Transport Res. Transport Environ. 15, 298–303 (2010)

    Article  Google Scholar 

  4. Jacobson, M.Z.: Global direct radiative forcing due to multicomponent antrophogenic and naturals aerosols. J. Geophys. Res. 106, 1551–1568 (2001)

    Article  Google Scholar 

  5. Koch, D.: Transport and direct radiative forcing of carbonaceous and sulphate aerosols in the GSISS GCM. J. Geophys. Res. 106, 20311–20332 (2001)

    Article  Google Scholar 

  6. Directive 715/2007/CE of the European Parliament and of the Council (2007)

  7. Directive 136/2014/CE of the European Parliament and of the Council (2014)

  8. Abu-Jrai, A., Rodríguez-Fernández, J., Tsolakis, A., Megaritis, A., Theinnoi, K., Cracknell, R.F.: Performance, combustion and emissions of a diesel engine operated with reformed EGR. Comparison of diesel and GTL fuelling. Fuel 88, 1031–1041 (2009)

    Article  Google Scholar 

  9. Johnson, J.H., Bagley, S.T., Gratz, L.D., Leddy, D.G.: A review of diesel particulate control technology and emissions effects – 1992 Horning Memorial Award Lecture. SAE International Congress and Exposition (1992)

  10. Neeft, J.P.A., Makkee, M., Moulijn, J.A.: Diesel particulate emissions control. Fuel Process. Tech. 47, 1–69 (1996)

    Article  Google Scholar 

  11. Eastwood, P.: Critical topics in exhaust gas aftertreatment. Research Studies Press, Baldock, Hertfordshire (2000)

    Google Scholar 

  12. Lapuerta, M., Oliva, F., Agudelo, J.R., Boehman, A.L.: Effect of fuel on the soot nanostructure and consequences on loading and regeneration of diesel particulate filters. Combust. Flame 159, 844–853 (2012)

    Article  Google Scholar 

  13. Vander Wal, R.L., Tomasek, A.J.: Soot oxidation: dependence upon initial nanostructure. Combust. Flame 134, 1–9 (2003)

    Article  Google Scholar 

  14. Vander Wal, R.L., Tomasek, A.J.: Soot oxidation: dependence upon synthesis conditions. Combust. Flame 136, 129–140 (2004)

    Article  Google Scholar 

  15. Lapuerta, M., Armas, O., Rodríguez-Fernández, J.: Effect of biodiesel fuel son diesel engine emissions. Prog. Energy Combust. Sci. 34, 198–223 (2008)

    Article  Google Scholar 

  16. Gill, S.S., Tsolakis, A., Dearn, K.D., Rodríguez-Fernández, J.: Combustion characteristics and emissions of Fischer-Tropsch diesel fuels in IC engines. Prog. Energy Combust. Sci. 37, 503–523 (2011)

    Article  Google Scholar 

  17. Directive 28/2009/CE of the European Parliament and of the Council (2009)

  18. Boehman, A.L., Song, J., Alam, M.: Impact of biodiesel blending on diesel soot and the regeneration of particulate filters. Energ Fuel 19, 1857–1864 (2005)

    Article  Google Scholar 

  19. Williams, A., Black, S., McCormick, R.L.: Biodiesel fuel property effects on particulate matter reactivity. In: 6th International Exhaust Gas and Particulate Emission Forum, Ludwigsburg, Germany, March 9–10. Available in http://www.gulfhydrocarbon.com/forms/BiodieselFuelProperty%20EffectsonParticulateMatterReactivity.pdf (2010). Accessed 31 Aug 2015

  20. Barrientos, E., Maricq, M., Boehman, A., Anderson, J.: Impact of Ester Structures on the Soot Characteristics and Soot Oxidative Reactivity of Biodiesel. SAE Technical Paper 2015-01-1080 (2015). doi:10.4271/2015-01-1080

  21. Salamanca, M., Mondragón, F., Agudelo, J.R., Santamaría, A.: Influence of palm oil biodiesel on the chemical and morphological characteristics of particulate matter emitted by a diesel engine. Atmosph. Env. 62, 220–227 (2012)

    Article  Google Scholar 

  22. Yehliu, K., Vander Wal, R.L., Armas, O., Boehman, A.L.: Impact of fuel formulation on the nanostructure and reactivity of diesel soot. Combust. Flame 159, 3597–3606 (2012)

    Article  Google Scholar 

  23. Liebig, D., Clark, R., Muth, J., Drescher, I.: Benefits of GTL Fuel in Vehicles Equipped with Diesel Particulate Filters. SAE Technical Paper 2009-01-1934 (2009). doi:10.4271/2009-01-1934

  24. Bhardwaj, O.P., Lüers, B., Holderbaum, B., Koerfer, T., Pischinger, S., Honkanen, M.: Utilization of HVO fuel properties in a High Efficiency Combustion System: Part 2: Relationship of Soot Characteristics with its Oxidation Behavior in DPF. SAE Technical Paper 2014-01-2846 (2014). doi:10.4271/2014-01-2846

  25. Armas, O., García-Contreras, R., Ramos, A., López, A.F.: Impact of animal fat biodiesel, GTL, and HVO fuels on combustion, performance, and pollutant emissions of a light-duty diesel vehicle tested under the NEDC. J. Energy Eng. 141(2), C4014009 (2015)

    Article  Google Scholar 

  26. Lapuerta, A., Hernández, J.J., Giménez, F.: Evaluation of exhaust gas recirculation as a technique for reducing diesel engine NOx emissions. Proc. Instn. Mech. Engrs. D 214, 85–93 (2000)

    Article  Google Scholar 

  27. Rodríguez-Fernández, J., Oliva, F., Vázquez, R.: Characterization of the diesel soot oxidation process through an optimized thermogravimetric method. Energ Fuel 25, 2039–2048 (2011)

    Article  Google Scholar 

  28. Song, J., Alam, M., Boehman, A.L.: Impact of alternative fuels on soot properties and DPF regeneration. Combust. Sci. Tech. 179, 1991–2037 (2007)

    Article  Google Scholar 

  29. Williams, A., McCormick, R.L., Hayes, R., Ireland, J., Fang, H.L.: Effect of biodiesel blends on diesel particulate filter performance. SAE Technical Paper 2006-01-3280 (2006)

  30. Stratakis, G.A., Stamatelos, A.M.: Thermogravimetric analysis of soot emitted by a modern diesel engine run on catalyst-doped fuel. Combust. Flame 132, 157–169 (2003)

    Article  Google Scholar 

  31. Muckenhuber, H., Grothe, H.: A DRIFTS study of the heterogeneous reaction fo NO2 with carbonaceous materials at elevated temperature. Carbon 45, 321–329 (2007)

    Article  Google Scholar 

  32. Hernández-Giménez, A.M., Lozano-Castelló, C., Bueno-López, A.: Effect of CO2, H2O and SO2 in the ceria-catalyzed combustión of soot under simulated diesel exhaust conditions. Appl. Catal. B Environ. 148–149, 406–414 (2014)

    Article  Google Scholar 

  33. Brunauer, S., Emmett, P.H., Teller, E.: Adsorption of gases in multimolecular layers. J. Am. Chem. Soc. 60, 309–319 (1938)

    Article  Google Scholar 

  34. Fernandes, M.B., Skjemstad, J.O., Johnson, B.B., Wells, J.D., Brooks, P.: Characterization of carbonaceous combustion residues. I. Morphological, elemental and spectroscopic features. Chemosphere 51, 785–795 (2003)

    Article  Google Scholar 

  35. Tighe, C.J., Twigg, M.V., Hayhurst, A.N., Dennis, J.S.: The kinetics of oxidation of Diesel soots by NO2. Combust. Flame 159, 77–90 (2012)

    Article  Google Scholar 

  36. Russo, C., Stanzione, F., Tegrossi, A., Alfè, M., Ciajolo, A.: The effect of temperature on the condensed phases formed in fuel-rich premixed benzene flames. Combust. Flame 159, 2233–2242 (2012)

    Article  Google Scholar 

  37. Sánchez Escribano, V., Fernández López, E., Gallardo Amores, J.M., del Hoyo Martínez, C., Pistarino, C., Panizza, M., Resini, C., Busca, G.: Combust. Flame 153, 97–104 (2008)

    Article  Google Scholar 

  38. Hu, S., Xiang, J., Sun, L., Xu, M., Qiu, J., Fu, P.: Characterization of char from rapid pyrolisis of rice husk. Fuel Process. Technol. 89, 1096–1105 (2008)

    Article  Google Scholar 

  39. Santamaría, A., Mondragón, F., Molina, A., Marsh, N.D., Eddigns, E.G., Sarofim, A, F.: FT-IR and 1H NMR characterization of the products of an ethylene inverse diffusion flame. Combust. Flame 146, 52–62 (2006)

  40. Jeremy, P., Gassman, P.L., Wang, H., Laskin, A.: Micro-FTIR study of soot chemical composition-evidence of aliphatic hydrocarbons on nascent soot surfaces. Phys. Chem. Chem. Phys. 12, 5206–5218 (2010)

    Article  Google Scholar 

  41. Santamaría, A., Yang, N., Eddigngs, E., Mondragón, F.: Chemical and morphological characterization of soot and soot precursors generated in an inverse diffusion flame with aromatic and aliphatic fuels. Combust. Flame 157, 33–42 (2010)

    Article  Google Scholar 

  42. Sharma, R., Wooten, J., Baliga, V., Lin, X., Chan, W., Hajaligol, M.: Characterization of chars form pyrolysis of lignin. Fuel 83, 1469–1482 (2004)

    Article  Google Scholar 

  43. Sharma, R., Wooten, J., Baliga, V., Hajaligol, M.: Characterization of chars from biomass-derived materials: pectin chars. Fuel 80, 1825–1836 (2001)

    Article  Google Scholar 

  44. Daly, H.M., Horn, A.B.: Heterogeneous chemistry of toluene, kerosene and diesel soots. Phys. Chem. Chem. Phys. 11, 1069–1076 (2009)

    Article  Google Scholar 

  45. Min, F., Zhang, M., Zhang, Y., Cao, Y., Pan, W.P.: An experimental investigation into the gasification reactivity and structure of agricultural waste chars. J. Anal. Appl. Pyrol. 92, 250–257 (2011)

    Article  Google Scholar 

  46. Uzun, B., Apaydin-Varol, E., Ates, F., Özbay, N., Pütün, A. A: synthetic fuel production from tea waste. Characterization of bio-oil and bio-char. Fuel 89, 176–194 (2010)

    Article  Google Scholar 

  47. Liu, Z., Zhang, F., Wu, J.: Characterization and application of chars produced from pinewood pyrolysis and hydrothermal treatment. Fuel 89, 510–514 (2010)

    Article  Google Scholar 

  48. Jindaron, C., Meeyoo, V., Kitiyanan, B., Rirksomboon, T., Rangsunvigit, P.: Surface characterization and dye adsorptive capacities of char obtained from pyrolysis/gasification of sewage sludge. Chem. Eng. J. 133, 239–246 (2007)

    Article  Google Scholar 

  49. Molina, A., Mondragón, F.: Reactivity of coal gasification with steam and CO2. Fuel 77, 1831–1839 (1998)

    Article  Google Scholar 

  50. Wang, L., Song, C., Song, J., Lv, L., Pang, H., Zhang, W.: Aliphatic C-H and oxygenated surface functional groups of diesel in-cylinder soot: characterizations and impact on soot oxidation behaviour. Proc. Comb. Inst. 34, 3099–3106 (2013)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Lapuerta.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lapuerta, M., Rodríguez-Fernández, J., Sánchez-Valdepeñas, J. et al. Multi-Technique Analysis of Soot Reactivity from Conventional and Paraffinic Diesel Fuels. Flow Turbulence Combust 96, 327–341 (2016). https://doi.org/10.1007/s10494-015-9644-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10494-015-9644-y

Keywords

Navigation