Skip to main content
Log in

Alterations induced by Colomerus vitis on the structural and physiological leaf features of two grape cultivars

  • Research
  • Published:
Experimental and Applied Acarology Aims and scope Submit manuscript

Abstract

Vitis vinifera is cultivated worldwide for its high nutritional and commercial value. More than 60 grape cultivars are cultivated in Chile. Two of these, the país and the corinto cultivars, are the oldest known and widely used for the preparation of traditional homemade drinks and consumption as table grapes. These two grape cultivars are affected by Colomerus vitis, an eriophyid mite which establishes on their leaves and forms erinea, where the mite and its offspring obtain shelter and food. Although C. vitis has a cosmopolitan distribution, few studies of its impact on the structure and physiology of affected plants have been reported. Herein we aimed to evaluate the impact of C. vitis infection on the structural and physiological leaf performance of the two grape cultivars. The results showed tissue hyperplasia and cell hypertrophy in the epidermis, with an overproduction of trichomes and emergences in the abaxial epidermis in both cultivars. The anatomical changes were similar between the país and corinto cultivars, but they were proportionally greater in the país, where the area affected by the erinea were greater. No significant changes were detected in the photosynthetic pigment content; however, there was an increase in the total soluble sugars content in the erineum leaves of the país cultivar. Higher contents of anthocyanins and total phenols, as well as the presence of the pinocembrin in the corinto cultivar, which was less affected by C. vitis, could also indicate some resistance to mites’ attack, which should be investigated in future studies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Data availability

the datasets generated during and/or analyzed during the current study are available from the corresponding author on reasonable request.

Abbreviations

C:

corinto cultivar

EL:

Erinium leaves

NEL:

Non-erineum leaves

P:

país cultivar

TSS:

Total soluble sugars

References

  • Aguilera I, Alvear A (2021) Popular urban taste and mass culture: Chancho and terremoto in Chile. In: Ayora-Diaz SI (ed) Cultural politics of food, taste, and identity: a global perspective, firts edit. Bloomsbury Publishing, United Kingdom

    Google Scholar 

  • Ali K, Maltese F, Choi YH, Verpoorte R (2010) Metabolic constituents of grapevine and grape-derived products. Phytochem Rev 9:357–378. https://doi.org/10.1007/s11101-009-9158-0

    Article  CAS  PubMed  Google Scholar 

  • Aliquó G, Torres R, Lacombe T et al (2017) Identity and parentage of some south American grapevine cultivars present in Argentina. Aust J Grape Wine Res 23:452–460

    Article  Google Scholar 

  • Avgin S, Bahadiroğu G (2004) The effect of Colomerus vitis (Pgst.) (Acarina:Eriophyidae) on the yield and quality of grapes in Islahiye, Gaziantep. J Agric Sci 14:73–78

    Google Scholar 

  • Baker BJR (1958) Note on the use of bromophenol blue for the histochemical recognition of protein. Q J Microsc Sci 99:459–460

    CAS  Google Scholar 

  • Banerjee P, Islam M, Laha A et al (2020) Phytochemical analysis of mite-infested tea leaves of Darjeeling Hills. Phytochem Anal 31:277–286. https://doi.org/10.1002/pca.2893

    Article  CAS  PubMed  Google Scholar 

  • Bradford MM (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72:248–254

    Article  CAS  PubMed  Google Scholar 

  • Chow PS, Landhäusser SM (2004) A method for routine measurements of total sugar and starch content in woody plant tissues. Tree Physiol 24:1129–1136

    Article  CAS  PubMed  Google Scholar 

  • Cirkovic D, Matijaševic S, Deletic N et al (2019) The effect of early and late defoliation on phenolic composition and antioxidant properties of prokupac variety grape berries (Vitis vinifera L). Agronomy. https://doi.org/10.3390/agronomy9120822

    Article  Google Scholar 

  • Coueé I, Sulmon C, Gouesbet G, Amrani A, El (2006) Involvement of soluble sugars in reactive oxygen species balance and responses to oxidative stress in plants. J Exp Bot 57:449–459. https://doi.org/10.1093/jxb/erj027

    Article  CAS  PubMed  Google Scholar 

  • Dickson RE (1979) Analytical procedures for the sequential extraction of 14 C-Labeled constituents from leaves, bark and wood of cottonwood plants. Physiol Plant 45:480–488

    Article  CAS  Google Scholar 

  • Ding H, Ali A, Cheng Z (2020) an allelopathic role for garlic root exudates in the regulation of carbohydrate metabolism in cucumber in a hydroponic co-culture system. Plants. https://doi.org/10.3390/plants9010045

    Article  PubMed  PubMed Central  Google Scholar 

  • Dorosh O, Moreira MM, Pinto D, Peixoto AF (2020) Evaluation of the extraction temperature influence on polyphenolic profiles of vine-canes (Vitis vinifera) subcritical water extracts. Foods 9:1–15

    Article  Google Scholar 

  • Fambrini M, Landi M, Pugliesi C (2021) Erinea in the ’Ansonica’ grapevine cultivar: trichome complement, histological effects and analysis of chlorophyll fluorescence in affected leaves Erinea in the ’Ansonica’ grapevine cultivar: trichome complement, histological effects and analysis. Vitis 60:101–108. https://doi.org/10.5073/vitis.2021.60.101-108

    Article  Google Scholar 

  • Ferreira BG, Teixeira CT, Isaias RMS (2014) Efficiency of the polyethylene-glycol (PEG) embedding medium for plant histochemistry. JHC 62:1–7. https://doi.org/10.1369/0022155414538265

    Article  CAS  Google Scholar 

  • Ferreira BG, Álvarez R, Avritzer SC, Isaias RMS (2017) Revisiting the histological patterns of storage tissues: beyond the limits of gall-inducing taxa. Botany 95:173–184

    Article  Google Scholar 

  • Ferreira BG, Álvarez R, Bragança GP et al (2019) Feeding and other gall gacets: patterns and determinants in gall structure. Bot Rev 85:78–106

    Article  Google Scholar 

  • Gabaston J, Richard T, Pinto AP (2017) Pinus pinaster knot: a source of polyphenols against Plasmopara Viticola. J Agric Food Chem 65:8884–8891. https://doi.org/10.1021/acs.jafc.7b04129

    Article  CAS  PubMed  Google Scholar 

  • Garcia-Seco D, Zhang Y, Gutierrez-ma FJ et al (2015) Application of pseudomonas fluorescens to blackberry under field conditions improves fruit quality by modifying flavonoid metabolism. PLoS ONE. https://doi.org/10.1371/journal.pone.0142639

    Article  PubMed  PubMed Central  Google Scholar 

  • Giampetruzzi A, Roumi V, Roberto R et al (2012) A new grapevine virus discovered by deep sequencing of virus- and viroid-derived small RNAs in Cv Pinot gris. Virus Res 163:262–268

    Article  CAS  PubMed  Google Scholar 

  • Giorgi F, Lionello P (2008) Climate change projections for the Mediterranean region. Glob Planet Change 63:90–104. https://doi.org/10.1016/j.gloplacha.2007.09.005

    Article  ADS  Google Scholar 

  • Giusti MM, Wrolstad RE (2001) Characterization and measurement of anthocyanins by UV-visible spectroscopy. Curr Protoc Food Anal Chem. https://doi.org/10.1002/0471142913.faf0102s00

    Article  Google Scholar 

  • Guedes LM, Torres S, Sáez-Carillo K et al (2022) High antioxidant activity of phenolic compounds dampens oxidative stress in Espinosa nothofagi galls induced on Nothofagus obliqua buds. Plant Sci. https://doi.org/10.1016/j.plantsci.2021.111114

    Article  PubMed  Google Scholar 

  • Guedes L, Sanhueza C, Torres S et al (2023) Gall-inducing Eriophyes tiliae stimulates the metabolism of Tilia platyphyllos leaves towards oxidative protection. Plant Physiol Biochem 195:25–36. https://doi.org/10.1016/j.plaphy.2022.12.014

    Article  CAS  PubMed  Google Scholar 

  • Halminton WD, Brown SP (2001) Autumn tree colours as a handicap signal. Proc R Soc Lond B 268:1489–1493.

    Article  Google Scholar 

  • Ibacache A, Zurita A, González C, Montoya MA (2015) Caracterización genética y agronómica de variedades pisqueras no tradicionales. La Serena

  • Irwin RE, Strauss SY, Storz S, Emerson A, Guibert G (2003) The role of hervibores in the maintenance of a flower color polymorphism in wild radish Ecology 8: 1733–1743

    Article  Google Scholar 

  • Isaias RMS, Oliveira DC, Carneiro RGS, Kraus JE (2014) Developmental anatomy of galls in the neotropics: arthropods stimuli versus host plant constraints. In: Fernandes GW, Santos JC (eds) Neotropical insect galls. Springer Science + Business Media Dordrecht, Dordrech, pp 15–34

    Chapter  Google Scholar 

  • Javadi Khederi S, Khanjani M, Bahman Asali F (2014a) Resistance of three grapevine cultivars to grape Erineum Mite, Colomerus vitis (Acari: Eriophyidae), in field conditions. Persian J Acarol 3:63–75

    Google Scholar 

  • Javadi Khederi S, Lillo E, De, Khanjani M, Gholami M (2014b) Resistance of grapevine to the erineum strain of Colomerus vitis (Acari: Eriophyidae) in western Iran and its correlation with plant features. Exp Appl Acarol 63:15–35. https://doi.org/10.1007/s10493-014-9778-y

    Article  Google Scholar 

  • Javadi Khederi S, Khanjani M, Gholami M, de Lillo E (2018a) Sources of resistance to the erineum strain of Colomerus vitis (Acari: Eriophyidae) in grapevine cultivars. Syst Appl Acarol 23:405–425

    Google Scholar 

  • Javadi Khederi S, Mohammad K, Mansur K (2018b) Impact of the erineum strain of Colomerus vitis (Acari: Eriophyidae) on the development of plants of grapevine cultivars of Iran. Exp Appl Acarol 74:347–363. https://doi.org/10.1007/s10493-018-0245-z

    Article  PubMed  Google Scholar 

  • Johansen DA (1940) Plant Microtechnique. Nature  https://doi.org/10.1038/147222b0

    Article  Google Scholar 

  • Karageorgou PC, Buschmann Y, Manetas (2008) Red leaf color as a warning signal against insect herbivory: Honest or mimetic? Flora - Morphol Distrib Funct Ecol Plants 203(8):648–652. https://doi.org/10.1016/j.flora.2007.10.006

    Article  Google Scholar 

  • Karioti A, Tooulakou G, Rita A et al (2011) Erinea formation on Quercus ilex leaves: anatomical, physiological and chemical responses of leaf trichomes against mite attack. Phytochemistry 72:230–237. https://doi.org/10.1016/j.phytochem.2010.11.005

    Article  CAS  PubMed  Google Scholar 

  • Kraus J, Arduin M (1997) Manual básico de métodos em morfologia vegetal, Brasil. EDUR, Rio de Janeiro

    Google Scholar 

  • LaPlante ER, Fleming MB, Migicovsky Z, Weber MG (2021) Genome-wide association study reveals a genomic region associated with mite-recruitment phenotypes in the domesticated grapevine (Vitis vinifera). Genes (Basel) 12:1013

    Article  CAS  PubMed  Google Scholar 

  • Lichtenthaler H, Wellburn AR (1983) Determinations of total carotenoids and chlorophylls a and b of leaf extracts in different solvents. Biochem Soc Trans 11:591–592

    Article  CAS  Google Scholar 

  • Lillo E, De, Pozzebon A, Valenzano D et al (2018) An intimate relationship between eriophyoid mites and their host plants – a review. Front Plant Sci 9:1–14. https://doi.org/10.3389/fpls.2018.01786

    Article  Google Scholar 

  • Lima MRM, Felgueiras ML, Cunha A et al (2017) Differential phenolic production in leaves of Vitis vinifera Cv. Alvarinho affected with esca disease. Plant Physiol Biochem 112:45–52. https://doi.org/10.1016/j.plaphy.2016.12.020

    Article  CAS  PubMed  Google Scholar 

  • Linder C, Jermini M, Zufferey V (2009) Nuisibilité De l’érinose sur le cépage Muscat. Rev Suisse Vitic Arboric Hortic 41:177–181

    Google Scholar 

  • Malagnini V, De Lillo E, Saldarelli P et al (2016) Transmission of grapevine Pinot Gris virus by Colomerus vitis (Acari: Eriophyidae) to grapevine. Arch Virol 161:2595–2599

    Article  CAS  PubMed  Google Scholar 

  • Mattivi F, Guzzon R, Vrhovsek U et al (2006) Metabolite profiling of grape: flavonols and anthocyanins. J Agric Food Chem 54:7692–7702

    Article  CAS  PubMed  Google Scholar 

  • Migicovsky Z, Sawler J, Gardner KM et al (2017) Patterns of genomic and phenomic diversity in wine and table grapes. Hortic Res 4:17035

    Article  PubMed  PubMed Central  Google Scholar 

  • Mongkolsilp S, Pongbupakit I, Sae-Lee N, Sitthihaworm W (2004) Radical scavenging activity and total phenolic content of medicinal plants used in primary health care. SWU J Pharm Sci 9(1):32–35

    Google Scholar 

  • Napal GN, Palacios S (2015) Bioinsecticidal effect of the flavonoids pinocembrin and quercetin against Spodoptera frugiperda. J Pest Sci 88:629–635. https://doi.org/10.1007/s10340-014-0641-z

    Article  Google Scholar 

  • Napal GND, Carpinella MC, Palacios SM (2009) Bioresource technology antifeedant activity of ethanolic extract from Flourensia Oolepis and isolation of pinocembrin as its active principle compound. Bioresour Technol 100:3669–3673. https://doi.org/10.1016/j.biortech.2009.02.050

    Article  CAS  Google Scholar 

  • Neacsu M, Eklund PC, Sjöholm RE et al (2007) Antioxidant flavonoids from knotwood of Jack pine and European aspen. Eur J Wood Wood Prod 65:1–16

    Article  CAS  Google Scholar 

  • Nobrega LP, de Sá Haiad B, Ferreira BG (2023) Epidermal and subepidermal changes during the formation of hairy galls induced by Eriophyidae on Avicennia schaueriana leaves. Sci Nat 110:49. https://doi.org/10.1007/s00114-023-01876-3

    Article  CAS  Google Scholar 

  • Nobsathian S, Saiyaitong C, Koul O, Pluempanupat W (2021) The insecticidal potential of Piper ribesioides (Piperales: Piperaceae) extracts and isolated allelochemicals and their impact on the detoxification enzymes of Spodoptera exigua (Lepidoptera: Noctuidae). Phytoparasitica 49:659–673

    Article  CAS  Google Scholar 

  • OIV (2023) Organización Internacional de la Viña y el Vino. In: Base datos variedades vid. https://www.oiv.int/es/

  • Oliveira DC, Isaias RMS, Fernandes GW et al (2016) Manipulation of host plant cells and tissues by gall-inducing insects and adaptive strategies used by different feeding guilds. J Insect Physiol 84:103–113. https://doi.org/10.1016/j.jinsphys.2015.11.012

    Article  CAS  PubMed  Google Scholar 

  • Pefaur J (2020) Evolución De La Fruticultura chilena en Los últimos 20 años. Estudios Y políticas Agrarias-Odepa. Ministerio de Agricultura, Santiago, Chile

    Google Scholar 

  • Peralta L (2002) Erinosis De La vid [en línea]. Informativo INIA Quilamapu, Chillan, p 61

    Google Scholar 

  • Rasul A, Millimouno FM, Eltayb WA et al (2013) Pinocembrin: a novel natural compound with versatile pharmacological and biological activities. Biomed Res Int. https://doi.org/10.1155/2013/379850

    Article  PubMed  PubMed Central  Google Scholar 

  • R Core Team (2021) R: A language and environment for statistical computing

  • Rose R, Rose CL, OmiS.K., et al (1991) Starch determination byperchloric acid vs enzymes: evaluating the accuracy and precision of six colorimetric methods. J Agric Food Chem 39:2–11

    Article  CAS  Google Scholar 

  • Saccaggi DL, Maboeei P, Powell C et al (2022) Towards solving the Colomerus vitis conundrum: genetic evidence reveals a complex of highly diverged groups with little morphological differentiation. Diversity 15:342

    Article  Google Scholar 

  • Santos J, Escobar-avello D, Magalhães P et al (2022) High-value compounds obtained from grape canes (Vitis vinifera L.) by steam pressure alkali. Food Bioprod Process 133:153–167. https://doi.org/10.1016/j.fbp.2022.04.003

    Article  CAS  Google Scholar 

  • Sass J (1951) Botanical microtechnique, The Iowa S. Iowa

  • Soromou LW, Chu X, Jiang L et al (2014) In vitro and in vivo protection provided by pinocembrin against lipopolysaccharide-induced inflammatory responses. Int Immunopharmacol 14:66–74

    Article  Google Scholar 

  • Zamorano A, Medina G, Fernández C et al (2019) First report of Grapevine Pinot Gris Virus in grapevine in Chile. Plant Dis 103:4–7

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the Vicerrectoría de Investigación y Desarrollo (VRID), Universidad de Concepción, Chile, which provided financial support for the English revision [2023000002TRD].

Author information

Authors and Affiliations

Authors

Contributions

L.M.G. Conceptualization, Methodology, Writing- Original draft preparation. I.A.H. Conceptualization, Formal analysis, Investigation, Data curation. L.R-C. and C.F. Resources and data curation. C.S. Formal analysis, Investigation, Reviewing and Editing. E.G. Visualization, Statistical analyzes. N.A. Supervision, Writing- Reviewing and Editing.

Corresponding author

Correspondence to Narciso Aguilera.

Ethics declarations

Conflict of interest

the authors declare no conflict of interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Guedes, L.M., Henríquez, I.A., Sanhueza, C. et al. Alterations induced by Colomerus vitis on the structural and physiological leaf features of two grape cultivars. Exp Appl Acarol 92, 183–201 (2024). https://doi.org/10.1007/s10493-023-00884-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10493-023-00884-2

Keywords

Navigation