Skip to main content
Log in

Population abundance of Varroa destructor and its effects on Apis mellifera scutellata colonies in Kenya

  • Published:
Experimental and Applied Acarology Aims and scope Submit manuscript

Abstract

The devastating effects of Varroa destructor Anderson and Trueman on Western honeybee colonies (Apis mellifera L.) have been well documented. Not only do these mites cause physical damage to parasitized individuals when they feed on them, but they also transmit viruses and other pathogens, weaken colonies and ultimately may cause their death. Unlike the subspecies of European origin, the honeybees of African origin suffer less from mite infestations. Absconding is one of the factors contributing to low V. destructor population in honeybee colonies as it creates a brood-free period. For a long time, researchers hypothesized that absconding was the main mechanism to control the parasite. The effects of V. destructor are well documented under temperate climatic conditions with a break during winter. Therefore, our study aimed at investigating the impact of V. destructor population growth on colony size, absconding and productivity under natural infestation levels of a tropical/subtropical climate with continuous brood production. We measured several characteristics related to the mite populations, the bee colonies and the resources of the bee colonies for a period of 8 months. The seven colonies that absconded during the study period were not influenced by densities of V. destructor. Absconding of the colonies occurred as a result of low numbers of capped brood. Mite densities were generally low throughout the study period (ranged between 26.9 and 59.8 mites per month) but were positively associated with adult bee densities. The amount of open and capped brood was positively associated with densities of V. destructor in the brood and negatively associated with denisities of V. destructor on screen boards, which appeared as extremely important factors that should be monitored regularly alongside colony stores and availability of pollen.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Adjlane N, Benaziza D, Haddad N (2015) Population dynamic of Varroa destructor in the local honeybee Apis mellifera intermissa in Algeria. Bull Pure Appl Sciences 34:25–37

    Google Scholar 

  • Annoscia D, Del Piccolo F, Nazzi F (2012) How does the mite Varroa destructor kill the honeybee Apis mellifera? Alteration of cuticular hydrocarbons and water loss in infested honeybees. J Insect Physiol 58:1548–1555

    CAS  PubMed  Google Scholar 

  • Arechavaleta VM, Guzman-Novoa E (2001) Relative effect of four characteristics that restrain the population growth of the mite Varroa destructor in honeybee (Apis mellifera) colonies. Apidologie 32:157–174

    Google Scholar 

  • Barton K (2019) MuMIn: Multi-Model Inference. R package version 1.43.6. https://CRAN.R-project.org/package=MuMIn

  • Bates D, Maechler M, Bolker B et al (2015) Fitting linear mixed-effects models using lme4. J Stat Softw 67:1–48

    Google Scholar 

  • Beaurepaire AL, Krieger KJ, Moritz RFA (2017) Seasonal cycle of inbreeding and recombination of the parasitic mite Varroa destructor in honeybee colonies and its implications for the selection of acaricide resistance. Infect Genet Evol 50:49–54

    CAS  PubMed  Google Scholar 

  • Boot WJ, Calis JNM, Beetsma J et al (1999) Natural selection of Varroa jacobsoni explains the different reproductive strategies in colonies of Apis cerana and Apis mellifera. Exp Appl Acarol 23:133–144

    Google Scholar 

  • Bowen-Walker PL, Gunn A (2001) The effect of the ectoparasitic mite, Varroa destructor on adult worker honeybee (Apis mellifera) emergence weights, water, protein, carbohydrate, and lipid levels. Entomol Exp Appl 101:207–217

    CAS  Google Scholar 

  • Bowen-Walker PL, Martin SJ, Gunn A (1999) The transmission of deformed wing virus between honeybees (Apis mellifera L.) by the ectoparasitic mite Varroa jacobsoni Oud. J Invertebr Pathol 73:101–106

    CAS  PubMed  Google Scholar 

  • Brodschneider R, Crailsheim K (2010) Nutrition and health in honeybees. Apidologie 41:278–294

    Google Scholar 

  • Calderon RA, van Veen JW (2008) Varroa destructor (Mesostigmata: Varroidae) in Costa Rica: population dynamics and its influence on the colony condition of Africanized honey bees (Hymenoptera: Apidae). Int J Trop Biol 56:1741–1747

    Google Scholar 

  • Calderon RA, van Veen JW, Sommeijer MJ et al (2010) Reproductive biology of Varroa destructor in Africanized honey bees (Apis mellifera). Exp Appl Acarol 50:281–297

    CAS  PubMed  Google Scholar 

  • Chemurot M, Akol AM, Masembe C et al (2016) Factors influencing the prevalence and infestation levels of Varroa destructor in honeybee colonies in two highland agro-ecological zones of Uganda. Exp Appl Acarol 68:497–508

    PubMed  Google Scholar 

  • Cheruiyot SK, Lattorff HMG, Kahuthia-Gathu R et al (2018) Varroa- specific hygienic behavior of Apis mellifera scutellata in Kenya. Apidologie 49:439–449

    CAS  Google Scholar 

  • Currie RW, Tahmasbi GH (2008) The ability of high-and low-grooming lines of honey bees to remove the parasitic mite Varroa destructor is affected by environmental conditions. J Can Zool 86:1059–1067

    Google Scholar 

  • De Jong D, Gocalves LS, Morse RA (1984) Dependence on climate of the virulence of Varroa jacobsoni. Bee World 65:117–121

    Google Scholar 

  • DeGrandi-Hoffman G, Curry R (2004) A mathematical model of Varroa mite (Varroa destructor Anderson and Trueman) and honeybee (Apis mellifera L.) population dynamics. Int J Acarol 30:259–274

    Google Scholar 

  • DeGrandi-Hoffman G, Ahumada F, Zazueta V et al (2016) Population growth of Varroa destructor (Acari: Varroidae) in honey bee colonies is affected by the number of foragers with mites. Exp Appl Acarol 69:21–34

    CAS  PubMed  PubMed Central  Google Scholar 

  • Del Piccolo F, Nazzi F, Della Vedova G et al (2010) Selection of Apis mellifera workers by the parasitic mite Varroa destructor using host cuticular hydrocarbons. Parasitology 137:967–973

    PubMed  Google Scholar 

  • Delaplane KS, Van Der Steen J, Guzman­ Novoa E (2013) Standard methods for estimating strength parameters of Apis mellifera colonies. J Apic Res 52:1–12. https://doi.org/10.3896/IBRA.1.52.1.03

    Article  Google Scholar 

  • Dietemann V, Nazzi F, Martin SJ et al (2013) Standard methods for Varroa research. In: Dietemann V, Ellis JD, Neumann P (eds) The COLOSS BEEBOOK, Volume II: Standard methods for Apis mellifera pest and pathogen research. J Apicult Res 52:1–54

  • DietemannV, Pirk CWW, Crewe RM (2009) Is there a need for conservation of honeybees in Africa? Apidologie 40:285–295

    Google Scholar 

  • Donze G, Herrmann M, Bachofen B et al (1996) Effect of mating frequency and brood cell infestation rate on the reproductive success of the honeybee parasite Varroa jacobsoni. J Ecol Entomol 21:17–26

    Google Scholar 

  • Ellis JD, Nalen CMZ (2010) Varroa Mite, Varroa destructor Anderson and Trueman (Arachnida: Acari: Varroidae). J Apic Res 4:114–117

    Google Scholar 

  • Emsen B, Guzman-Novoa E, Kelly PG (2014) Honey production of honey bee (Hymenoptera: Apidae) colonies with high and low Varroa destructor (Acari: Varroidae) infestation rates in eastern Canada. Entomol Soc Can 146:236–240

    Google Scholar 

  • Erickson EH, Atmowidjojo AH, Hines L (1998) Can we produce Varroa-tolerant honey bees in the United States? Am Bee J 138:828–832

    Google Scholar 

  • Frazier M, Muli E, Conklin T et al (2009) A scientific note on Varroa destructor found in East Africa; threat or opportunity? Apidologie 41:463–465

    Google Scholar 

  • Frey E, Rosenkranz P (2014) Autumn invasion rates of Varroa destructor (Mesostigmata: Varroidae) into honey bee (Hymenoptera:Apidae) colonies and the resulting increase in mite populations. J Econ Entomol 107:508–515

    PubMed  Google Scholar 

  • Fries I, Aarhus A, Hansen H et al (1991) Comparison of diagnostic methods for detection of low infestation levels of Varroa jacobsoni in honey-bee (Apis mellifera) colonies. Exp Appl Acarol 10:279–287

    Google Scholar 

  • Fries I, Camazine S, Sneyd J (1994) Population dynamics of Varroa Jacobsoni: a model and a review. Bee World 75:5–28

    Google Scholar 

  • Fries I, Huazhen W, Wei S et al (1996) Grooming behaviour and damaged mites (Varroa jacobsoni) in Apis cerana cerana and Apis mellifera ligustica. Apidologie 27:3–11

    Google Scholar 

  • Fries I, Hansen H, Imdorf A et al (2003) Swarming in honey bees (Apis mellifera) and Varroa destructor population development in Sweden. Apidologie 34:389–397

    Google Scholar 

  • Gebremedhn H, Amssalu B, Smet LD et al (2019) Factors restraining the population growth of Varroa destructor in Ethiopian honey bees (Apis mellifera simensis). PLoS ONE 14:e0223236

    CAS  PubMed  PubMed Central  Google Scholar 

  • Genersch E (2010) Honey bee pathology: current threats to honey bees and beekeeping. Appl Microbiol Biotechnol 87:87–97

    CAS  PubMed  Google Scholar 

  • Genersch E, von der Ohe W, Kaatz H et al (2010) The German bee monitoring project: a long term study to understand periodically high winter losses of honey bee colonies. Apidologie 41:332–352

    CAS  Google Scholar 

  • Gerig L (1983) Lehrgang zur erfassung der volksstarke. Schweiz Bienen-Zeitung 106:199–204

    Google Scholar 

  • Guzman-Novoa E, Emsen B, Unger P et al (2012) Genotypic variability and relationships between mite infestation levels, mite damage, grooming intensity, and removal of Varroa destructor mites in selected strains of worker honey bees (Apis mellifera). J Invertebr Pathol 110:314–320

    PubMed  Google Scholar 

  • Harris JW, Harbo JR, Villa JD et al (2003) Variable population growth of Varroa destructor (Mesostigmata: Varroidae) in colonies of honey bees (Hymenoptera: Apidae) during a 10-year period. Environ Entomol 32:1305–1312

    Google Scholar 

  • Hepburn HR, Radloff SE (1998) Honeybees of Africa. Springer, Berlin

    Google Scholar 

  • Hussein MH (2001) Beekeeping in Africa. Apiacta 1:23–48

    Google Scholar 

  • Hussein MH (2001b) Beekeeping in Africa: II—Central, southern African countries and islands. In: Proc 37th Int Apic Congr, Durban, South Africa

  • Ifantidis MD (1991) Re-examination of some parameters concerning reproduction of the mite Varroa jacobsoni Oud. Proceedings of the International Symposium Research on Bee Pathology, Gent, Belgium. 20–26

  • Kajobe R, Marris G, Budge G et al (2010) First molecular detection of a viral pathogen in Ugandan honey bees. J Invertebr Pathol 104:153–156

    PubMed  Google Scholar 

  • Kang Y, Blanco K, Davis T et al (2016) Disease dynamics of honeybees with Varroa destructor as parasite and virus vector. J Math Biosci 275:71–92

    Google Scholar 

  • Kinati C, Tolemariam T, Debele K et al (2012) Opportunities and challenges of honey production in Gomma district of Jimma zone, South-west Ethiopia. J Agric Extension Rural Dev 4:85–91

    Google Scholar 

  • Kralj J, Fuchs S (2006) Parasitic Varroa destructor mites influence flight duration and homing ability of infested Apis mellifera foragers. Apidologie 37:577–587

    Google Scholar 

  • Kurze C, Routtu J, Moritz RFA (2016) Parasite resistance and tolerance in honeybees at the individual and social level. Zoology 119:290–297

    PubMed  Google Scholar 

  • Lattorff HMG, Buchholz J, Fries I et al (2015) A selective sweep in a Varroa destructor resistant honey bee (Apis mellifera) population. Infect Genet Evol 31:169–176

    PubMed  Google Scholar 

  • Le Conte Y, Arnold G, Trouiller J et al (1989) Attraction of the parasitic mite Varroa to the drone larvae of honey bees by simple aliphatic esters. Science 245:638–639

    PubMed  Google Scholar 

  • Le Conte Y, Ellis M, Ritter W (2010) Varroa mites and honey bee health: can Varroa explain part of the colony losses? Apidologie 41:353–363

    Google Scholar 

  • Locke B (2016) Natural Varroa mite-surviving Apis mellifera honeybee populations. Apidologie 47:467–482

    Google Scholar 

  • Locke B, Fries I (2011) Characteristics of honey bee colonies (Apis mellifera) in Sweden surviving Varroa destructor infestation. Apidologie 42:533–542

    Google Scholar 

  • Lodesani M, Crailsheim K, Moritz RFA (2002) Effect of some characters on the population growth of mite Varroa jacobsoni in Apis mellifera L. colonies and results of a bi-directional selection. J Appl Entomol 126:130–137

    Google Scholar 

  • Macedo PA, Wu J, Ellis MD (2002) Using inert dusts to detect and assess Varroa infestations in honey bee colonies. J Apic Res 41:3–7

    Google Scholar 

  • Martin SJ (2001) Biology and life-history of Varroa mites. In: Webster TC, Delaplane KS (eds) Mites of the honey bee. Dadant and Sons Inc, Hamilton, pp 131–148

    Google Scholar 

  • Mcmenamin A, Mumoki F, Frazier M et al (2017) The impact of hive type on the behavior and health of honeybee colonies (Apis mellifera) in Kenya. Apidologie. https://doi.org/10.1007/s13592-017-0515-5

    Article  Google Scholar 

  • Medina-Flores CA, Guzman-Novoa E, Arechiga-Flores CF et al (2011) Effect of Varroa destructor infestations on honey yields of Apis mellifera colonies in Mexico’s semi-arid high plateau. Rev Mexic Cienc Pec 2:313–317

    Google Scholar 

  • Mondet F, De Miranda JR, Kretzschmar A et al (2014) On the front line: quantitative virus dynamics in honeybee (Apis mellifera L.) colonies along a new expansion front of the parasite Varroa destructor. PLoS ONE 10:e1004323

    Google Scholar 

  • Moretto G, Gonçalves L, De Jong D et al (1991) The effects of climate and bee race on Varroa jacobsoni Oud infestations in Brazil. Apidologie 22:197–203

    Google Scholar 

  • Moretto G, Leonidas JD-M (2001) Infestation and distribution of the mite Varroa destructor in colonies of Africanized bees. Departamento de Ciências Naturais, Universidade Regional de Blumenau, CEP 89010-971, Blumenau, SC, Brazil

  • Muli E, Patch H, Frazier M et al (2014) Evaluation of the distribution and impacts of parasites, pathogens, and pesticides on honey bee (Apis mellifera) populations in East Africa. PLoS ONE 9:e94459

    PubMed  PubMed Central  Google Scholar 

  • Mumoki FN, Fombong A, Muli E et al (2014) An inventory of documented diseases of African honeybees. Afr Entomol 22:473–487

    Google Scholar 

  • Nazzi F, Le Conte Y (2016) Ecology of Varroa destructor, the major ectoparasite of the Western honey bee, Apis mellifera. Annu Rev Entomol 61:417–432

    CAS  PubMed  Google Scholar 

  • Nazzi F, Milani N, Della Vedova G et al (2001) Semiochemicals from larval food affect the locomotory behaviour of Varroa destructor. Apidologie 32:149–155

    CAS  Google Scholar 

  • Nganso BT, Fombong AT, Yusuf AA et al (2017) Hygienic and grooming behaviors in African and European honeybees—New damage categories in Varroa destructor. PLoS ONE 12:e0179329

    PubMed  PubMed Central  Google Scholar 

  • Nganso BT, Fombong AT, Yusuf AA et al (2018) Low fertility, fecundity and numbers of mated female offspring explain the lower reproductive success of the parasitic mite Varroa destructor in African honeybees. Parasitology 145:1633–1639

    PubMed  Google Scholar 

  • Odoux JF, Aupinel P, Gateff S et al (2014) ECOBEE: a tool for long-term bee colony monitoring at landscape scale in west European intensive agrosystems. J Apic Res 53:57–66

    Google Scholar 

  • Ongus JR, Fombong AT, Irungu J et al (2018) Prevalence of common honey bee pathogens at selected apiaries in Kenya, 2013/2014. Int J Trop Insect Sci 38:58–70

    Google Scholar 

  • Pirk CWW, Strauss U, Yusuf AA et al (2016) Honey bee health in Africa-a review. Apidologie 47:276–300

    Google Scholar 

  • R Core Team (2019) A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna

    Google Scholar 

  • Ramsey SD, Ochoa R, Bauchan G et al (2019) Varroa destructor feeds primarily on honey bee fat body tissue and not hemolymph. PNAS 116:1792–1801

    CAS  PubMed  PubMed Central  Google Scholar 

  • Rosenkranz P (1999) Honey bee (Apis mellifera L.) tolerance to Varroa jacobsoni Oud in South America. Apidologie 30:159–172

    Google Scholar 

  • Rosenkranz P, Kirsch R, Renz R (2006) Population dynamics of honey bee colonies and Varroa tolerance: a comparison between Uruguay and Germany. In: Santana, Lobo, Hartfelder (Eds.) Proceedings 7th EncontroSobreAbelhas, USP, Ribeirao Preto, Brazil

  • Rosenkranz P, Aumeier P, Ziegelmann B (2010) Biology and control of Varroa destructor. J Invertebr Pathol 103:S96–S119

    PubMed  Google Scholar 

  • Sammataro D, Gerson U, Needham G (2000) Parasitic mites of honey bees: life history, implications, and impact. Annu Rev Entomol 45:519–548

    CAS  PubMed  Google Scholar 

  • Seeley TD, Smith ML (2015) Crowding honeybee colonies in apiaries can increase their vulnerability to the deadly ectoparasite Varroa destructor. Apidologie 46:716–727

    Google Scholar 

  • Smith KM, Loh EH, Rostal MK et al (2014) Pathogens, pests, and economics: drivers of honeybee colony declines and losses. EcoHealth 10:434–445

    Google Scholar 

  • Strauss U, Human H, Gauthier L et al (2013) Seasonal prevalence of pathogens and parasites in the savannah honeybee (Apis mellifera scutellata). J Invertebr Pathol 114:45–52

    PubMed  Google Scholar 

  • Strauss U, Pirk CWW, Crewe RM et al (2015) Impact of Varroa destructor on honey bee (Apis mellifera scutellata) colony development in South Africa. Exp Appl Acarol 65:89–106

    CAS  PubMed  Google Scholar 

  • Thakur R, Bienefeld K, Keller R (1996) Observations on defensive behaviour of Apis mellifera carnica against Varroa jacobsoni with the help of infrared photography. Apidologie 4:284–286

    Google Scholar 

  • van Dooremalen C, Gerritsen L, Cornelissen B et al (2012) Winter survival of individual honey bees and honey bee colonies depends on level of Varroa destructor infestation. PLoS ONE 7:e36285

    PubMed  PubMed Central  Google Scholar 

  • Vandame R, Palacio MA (2010) Preserved honey bee health in Latin America: a fragile equilibrium due to low-intensity agriculture and beekeeping? Apidologie 41:243–255

    Google Scholar 

  • Webster TC, Thacker EM, Vorisek FE (2000) Live Varroa jacobsoni (Mesostigmata: Varroidae) fallen from honey bee (Hymenoptera: Apidae) colonies. J Econ Entomol 93:1596–1601

    CAS  PubMed  Google Scholar 

  • Winston ML, Otis GW, Taylor OR (1979) Absconding behaviour of the africanized honeybee in South America. J Apic Res 18:85–94

    Google Scholar 

Download references

Acknowledgements

We thank beekeeping technicians James N. Kimani, Joseph W. Kilonzo and Newton M. Ngui for their assistance in the field and laboratory. We gratefully acknowledge the financial support for this research by the following organizations and agencies: International Fund for Agricultural Development (IFAD-2000000282); UK’s Foreign, Commonwealth & Development Office (FCDO); the Swedish International Development Cooperation Agency (Sida); the Swiss Agency for Development and Cooperation (SDC); the Federal Democratic Republic of Ethiopia; and the Government of the Republic of Kenya. The views expressed herein do not necessarily reflect the official opinion of the donors.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to H. Michael G. Lattorff.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Electronic supplementary material 1 (DOCX 1512 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cheruiyot, S.K., Kahuthia-Gathu, R., Mbugi, J.P. et al. Population abundance of Varroa destructor and its effects on Apis mellifera scutellata colonies in Kenya. Exp Appl Acarol 82, 171–184 (2020). https://doi.org/10.1007/s10493-020-00548-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10493-020-00548-5

Keywords

Navigation