Skip to main content
Log in

Fatty acid metabolism in an oribatid mite: de novo biosynthesis and the effect of starvation

  • Published:
Experimental and Applied Acarology Aims and scope Submit manuscript

Abstract

The fatty acid (FA) composition of lipids in animals is influenced by factors such as species, life stage, availability and type of food, as well as the ability to synthesize certain FAs de novo. We investigated the effect of starvation on the neutral lipid (NLFA) and phospholipid (PLFA) fatty acid patterns of the oribatid mite Archegozetes longisetosus Aoki. Furthermore, we performed stable-isotope labeled precursors feeding experiments under axenic conditions to delineate de novo FA synthesis by profiling 13C and deuterium incorporation via single-ion monitoring. Starvation of mites resulted in a decline in the total amount of NLFAs and significantly changed the fatty acid patterns, indicating that NLFAs were metabolized selectively. Biochemical tracer experiments confirmed that oribatid mites, like other animals, can produce stearic (18:0) and oleic acid (18:1ω9) de novo. Mass spectrometric data also revealed that they appear to synthesize linoleic acid [18:2ω6,9 = (9Z,12Z)-octadeca-9,12-dienoic acid]—an ability restricted only to a few arthropod taxa, including astigmatid mites. The physiological and biosynthesis processes revealed here are crucial to understand the potential biomarker function of fatty acids—especially 18:2ω6,9—in oribatid mites and their applicability in soil animal food web studies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Aboshi T, Shimizu N, Nakajima Y, Honda Y, Kuwahara Y, Amano H, Mori N (2013) Biosynthesis of linoleic acid in Tyrophagus mites (Acarina: Acaridae). Insect Biochem Mol Biol 43:991–996

    CAS  PubMed  Google Scholar 

  • Behan-Pelletier V (1997) Oribatid mites (Acari: Oribatida) of the Yukon. Insects of the Yukon Biological Survey of Canada (Terrestrial Arthropods). Biological Survey of Canada (Terrestrial Arthropods), Ottawa, pp 115–149

    Google Scholar 

  • Brückner A, Hilpert A, Heethoff M (2017) Biomarker function and nutritional stoichiometry of neutral lipid fatty acids and amino acids in oribatid mites. Soil Biol Biochem 115:35–43

    Google Scholar 

  • Brückner A, Schuster R, Wehner K, Heethoff M (2018) Nutritional quality modulates trait variability. Front Zool 15:50

    PubMed  PubMed Central  Google Scholar 

  • Bünemann EK et al (2018) Soil quality—a critical review. Soil Biol Biochem 120:105–125

    Google Scholar 

  • Canavoso L, Bertello L, De Lederkremer R, Rubiolo E (1998) Effect of fasting on the composition of the fat body lipid of Dipetalogaster maximus, Triatoma infestans and Panstrongylus megistus (Hemiptera: Reduviidae). J Comp Physiol B 168:549–554

    CAS  PubMed  Google Scholar 

  • Canavoso LE, Stariolo R, Rubiolo ER (2003) Flight metabolism in Panstrongylus megistus (Hemiptera: Reduviidae): the role of carbohydrates and lipids. Mem Inst Oswaldo Cruz 98:909–914

    CAS  PubMed  Google Scholar 

  • Canavoso LE, Frede S, Rubiolo ER (2004) Metabolic pathways for dietary lipids in the midgut of hematophagous Panstrongylus megistus (Hemiptera: Reduviidae). Insect Biochem Mol Biol 34:845–854

    CAS  PubMed  Google Scholar 

  • Folch J, Lees M, Sloane Stanley GH (1957) A simple method for the isolation and purification of total lipids from animal tissues. J Biol Chem 226:497–509

    CAS  Google Scholar 

  • Hagenfeldt L, Wahren J (1968) Human forearm muscle metabolism during exercise II uptake, release and oxidation of individual FFA and glycerol. Scand J Clin Lab Investig 21:263–276

    CAS  Google Scholar 

  • Hammer Ø, Harper DAT, Ryan PD (2001) PAST: paleontological statistics software package for education and data analysis. Palaeontol Electron 4:9

    Google Scholar 

  • Harper GL, King RA, Dodd C, Harwood JD, Glen D, Bruford MW, Symondson WOC (2005) Rapid screening of invertebrate predators for multiple prey DNA targets. Mol Ecol 14:819–827

    CAS  PubMed  Google Scholar 

  • Haubert D (2006) Unraveling the structure of soil food webs: stable isotope, fatty acid and compound-specific fatty acid analysis. PhD Thesis

  • Haubert D, Haggblom MM, Scheu S, Ruess L (2004) Effects of fungal food quality and starvation on the fatty acid composition of Protaphorura fimata (Collembola). Comp Biochem Physiol B 138:41–52

    CAS  PubMed  Google Scholar 

  • Haubert D, Häggblom MM, Langel R, Scheu S, Ruess L (2006) Trophic shift of stable isotopes and fatty acids in Collembola on bacterial diets. Soil Biol Biochem 38:2004–2007

    CAS  Google Scholar 

  • Haubert D, Häggblom MM, Scheu S, Ruess L (2008) Effects of temperature and life stage on the fatty acid composition of Collembola. Eur J Soil Biol 44:213–219

    CAS  Google Scholar 

  • Heethoff M, Laumann M, Bergmann P (2007) Adding to the reproductive biology of the parthenogenetic oribatid mite, Archegozetes longisetosus (Acari, Oribatida, Trhypochthoniidae). Turk J Zool 31:151–159

    Google Scholar 

  • Heidemann K, Scheu S, Ruess L, Maraun M (2011) Molecular detection of nematode predation and scavenging in oribatid mites: laboratory and field experiments. Soil Biol Biochem 43:229–236

    Google Scholar 

  • Hilligsøe H, Holmstrup M (2003) Effects of starvation and body mass on drought tolerance in the soil collembolan Folsomia candida. J Insect Physiol 49:99–104

    PubMed  Google Scholar 

  • Howard R, Stanley-Samuelson D, Nelson D (1993) Insect lipids: chemistry, biochemistry, and biology. University of Nebraska Press, Lincoln

    Google Scholar 

  • King R, Read D, Traugott M, Symondson WOC (2008) Molecular analysis of predation: a review of best practice for DNA-based approaches. Mol Ecol 17:947–963

    CAS  PubMed  Google Scholar 

  • Kühn J, Tobias K, Jähngen A, Ruess L (2020) Shifting systems: prerequisites for the application of quantitative fatty acid signature analysis in soil food webs. Philos Trans R Soc B 375:20190650

    Google Scholar 

  • Lavy D, Nedved O, Verhoef H (1997) Effects of starvation on body composition and cold tolerance in the collembolan Orchesella cincta and the isopod Porcellio scaber. J Insect Physiol 43:973–978

    CAS  PubMed  Google Scholar 

  • Malcicka M, Visser B, Ellers J (2018) An evolutionary perspective on linoleic acid synthesis in animals. Evol Biol 45:15–26

    PubMed  Google Scholar 

  • Maraun M, Erdmann G, Fischer BM, Pollierer MM, Norton RA, Schneider K, Scheu S (2011) Stable isotopes revisited: their use and limits for oribatid mite trophic ecology. Soil Biol Biochem 43:877–882

    CAS  Google Scholar 

  • Maraun M, Augustin D, Pollierer MM, Scheu S (2020) Variation in trophic niches of oribatid mites in temperate forest ecosystems as indicated by neutral lipid fatty acid patterns. Exp Appl Acarol 81:103–115

    CAS  PubMed  PubMed Central  Google Scholar 

  • McCue MD (2012) Comparative physiology of fasting, starvation, and food limitation. Springer, Berlin

    Google Scholar 

  • Menzel R, Ngosong C, Ruess L (2017) Isotopologue profiling enables insights into dietary routing and metabolism of trophic biomarker fatty acids. Chemoecology 27:101–114

    CAS  Google Scholar 

  • Menzel R, Geweiler D, Sass A, Simsek D, Ruess L (2018) Nematodes as important source for omega-3 long-chain fatty acids in the soil food web and the impact in nutrition for higher trophic levels. Front Ecol Evol 6:96

    Google Scholar 

  • Norton RA (1994) Evolutionary aspects of oribatid mite life histories and consequences for the origin of the Astigmata. In: Houck MA (ed) Mites: ecological and evolutionary analyses of life-history patterns. Chapman and Hall, New York, pp 99–135

    Google Scholar 

  • Pollierer MM, Dychmans J, Scheu S, Haubert D (2012) Carbon flux through fungi and bacteria into the forest soil animal food web as indicated by compound-specific 13C fatty acid analysis. Funct Ecol 26:978–990

    Google Scholar 

  • Pollierer MM, Larsen T, Potapov A, Brückner A, Heethoff M, Dyckmans J, Scheu S (2019) Compound-specific isotope analysis of amino acids as a new tool to uncover trophic chains in soil food webs. Ecol Monogr 89:e01384

    Google Scholar 

  • Potapov AM, Tiunov AV, Scheu S (2019) Uncovering trophic positions and food resources of soil animals using bulk natural stable isotope composition. Biol Rev 94:37–59

    Google Scholar 

  • Price ER, Krokfors A, Guglielmo CG (2008) Selective mobilization of fatty acids from adipose tissue in migratory birds. J Exp Biol 211:29–34

    CAS  PubMed  Google Scholar 

  • Raclot T (2003) Selective mobilization of fatty acids from adipose tissue triacylglycerols. Prog Lipid Res 42:257–288

    CAS  PubMed  Google Scholar 

  • Raclot T, Groscolas R (1993) Differential mobilization of white adipose tissue fatty acids according to chain length, unsaturation, and positional isomerism. J Lipid Res 34:1515–1526

    CAS  PubMed  Google Scholar 

  • Rosumek FB, Brückner A, Blüthgen N, Menzel F, Heethoff M (2017) Patterns and dynamics of neutral lipid fatty acids in ants—implications for ecological studies. Front Zool 14:36

    PubMed  PubMed Central  Google Scholar 

  • Rosumek FB, Blüthgen N, Brückner A, Menzel F, Gebauer G, Heethoff M (2018) Unveiling community patterns and trophic niches of tropical and temperate ants using an integrative framework of field data, stable isotopes and fatty acids. PeerJ 6:e5467

    PubMed  PubMed Central  Google Scholar 

  • Ruess L, Chamberlain PM (2010) The fat that matters: soil food web analysis using fatty acids and their carbon stable isotope signature. Soil Biol Biochem 42:1898–1910

    CAS  Google Scholar 

  • Sayanova O, Haslam R, Guschina I, Lloyd D, Christie WW, Harwood JL, Napier JA (2006) A bifunctional ∆12, ∆15-desaturase from Acanthamoeba castellanii directs the synthesis of highly unusual n-1 series unsaturated fatty acids. J Biol Chem 281:36533–36541

    CAS  PubMed  Google Scholar 

  • Schatz H, Behan-Pelletier V, O’Connor BM, Norton RA (2011) Suborder Oribatida van der Hammen, 1968. In: Zhang Z-Q (ed) Animal biodiversity an outline of higher-level classification and survey of taxonomic richness. Zootaxa 3148:7–237

    Google Scholar 

  • Seastedt T (1984) The role of microarthropods in decomposition and mineralization processes. Annu Rev Entomol 29:25–46

    Google Scholar 

  • Shimizu N, Naito M, Mori N, Kuwahara Y (2014) De novo biosynthesis of linoleic acid and its conversion to the hydrocarbon (Z,Z)-6,9-heptadecadiene in the astigmatid mite, Carpoglyphus lactis: incorporation experiments with 13C-labeled glucose. Insect Biochem Mol Biol 45:51–57

    CAS  PubMed  Google Scholar 

  • Smith S (1994) The animal fatty acid synthase: one gene, one polypeptide, seven enzymes. FASEB J 8:1248–1259

    CAS  PubMed  Google Scholar 

  • Stanley-Samuelson DW, Jurenka RA, Cripps C, Blomquist GJ, Derenobales M (1988) Fatty acids in insects—composition, metabolism, and biological significance. Arch Insect Biochem Physiol 9:1–33

    CAS  Google Scholar 

  • Wallis JG, Watts JL, Browse J (2002) Polyunsaturated fatty acid synthesis: what will they think of next? Trends Biochem Sci 27:467–473

    CAS  PubMed  Google Scholar 

  • Wallwork J (1979) Energetics of soil mites: the experimental approach. In: Proceedings of the 4th international congress on acarology, pp 69--73

  • Weinert J, Blomquist G, Borgeson C (1993) De novo biosynthesis of linoleic acid in two non-insect invertebrates: the land slug and the garden snail. Experientia 49:919–921

    CAS  Google Scholar 

  • Zhou XR, Horne I, Damcevski K, Haritos V, Green A, Singh S (2008) Isolation and functional characterization of two independently-evolved fatty acid ∆12‐desaturase genes from insects. Insect Mol Biol 17:667–676

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

Adrian Brückner is a Simons Fellow of the Life Sciences Research Foundation. This study was supported by the German Research Foundation (DFG; HE 4593/5-1).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Adrian Brückner or Michael Heethoff.

Ethics declarations

Conflict of interest

AB and MH declare that they have no conflict of interest.

Ethical approval

There are no legal restrictions on working with mites.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Brückner, A., Heethoff, M. Fatty acid metabolism in an oribatid mite: de novo biosynthesis and the effect of starvation. Exp Appl Acarol 81, 483–494 (2020). https://doi.org/10.1007/s10493-020-00529-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10493-020-00529-8

Keywords

Navigation