Skip to main content
Log in

Molecular monitoring of Neoseiulus californicus released from sheltered slow-release sachets for spider mite control in a Japanese pear greenhouse

  • Published:
Experimental and Applied Acarology Aims and scope Submit manuscript

Abstract

A novel system for spider mite control was developed with a slow-release sachet containing Neoseiulus californicus (McGregor) (Acari: Phytoseiidae) protected by a waterproof shelter. Monitoring the efficacy of the predator release system for spider mite control at a Japanese pear greenhouse requires discrimination of N. californicus from other indigenous phytoseiid mite species inhabiting the study site and subsequent identification of the released N. californicus. The report of our earlier study described a PCR-based method for discrimination of N. californicus species. For the present study, we first examined phytoseiid mite species composition in the greenhouse. Subsequently, we developed microsatellite markers to identify the released N. californicus. Finally, we installed the predator release system in the greenhouse and conducted a population survey of phytoseiid and spider mites. Results demonstrated that approximately 1 month is necessary for distribution of the released N. californicus on the leaves.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Bailly X, Migeon A, Navajas M (2004) Analysis of microsatellite variation in the spider mite pest Tetranychus turkestani (Acari: Tetranychidae) reveals population genetic structure and raises questions about related ecological factors. Biol J Linn Soc 82:69–78

    Article  Google Scholar 

  • Buitenhuis R, Shipp L, Scott-Dupree C (2010) Dispersal of Amblyseius swirskii Athias-Henriot (Acari: Phytoseiidae) on potted greenhouse chrysanthemum. Biol Control 52:110–114

    Article  Google Scholar 

  • Buitenhuis R, Glemser E, Brommit A (2014) Practical placement improves the performance of slow release sachets of Neoseiulus cucumeris. Biocontrol Sci Technol 24:1153–1166

    Article  Google Scholar 

  • Croft BA, Jung C (2001) Phytoseiid dispersal at plant to regional levels: a review with emphasis on management of Neoseiulus fallacis in diverse agroecosystems. Exp Appl Acarol 25:763–784

    Article  CAS  Google Scholar 

  • Doker I, Witters J, Pijnakker J, Kazak C, Tixier MS, Kreiter S (2014) Euseius gallicus Kreiter and Tixier (Acari: Phytoseiidae) is present in four more countries in Europe: Belgium, Germany, the Netherlands and Turkey. Acarologia 54:245–248

    Article  Google Scholar 

  • Gao H, Williamson S, Bustamante CD (2007) A Markov chain Monte Carlo approach for joint inference of population structure and inbreeding rates from multilocus genotype data. Genetics 176:1635–1651

    Article  Google Scholar 

  • Goudet J (2001) FSTAT: a program to estimate and test gene diversities and fixation indices (version 2.9.3). https://www.unil.ch/izea/softwares/fstat.html

  • Hancock J (1999) Microsatellites and other simple sequences: genomic context and mutational mechanisms. In: Goldstein DB, Schlötterer C (eds) Microsatellites: evolution and applications. Oxford University Press, Oxford, pp 1–9

    Google Scholar 

  • Helle W, Sabelis MW (1985) World crop pests. Spider mites: their biology, natural enemies and control, vol 1B. Elsevier, Amsterdam

    Google Scholar 

  • Hinomoto N, Todokoro Y, Higaki T (2011) Population structure of the predatory mite Neoseiulus womersleyi in a tea field based on an analysis of microsatellite DNA markers. Exp Appl Acarol 53:1–15

    Article  Google Scholar 

  • Ishii H, Mikawa Y, Murase Y, Sonoda S, Hinomoto N, Kishimoto H, Toyoshima S, Toyama M (2018) Species composition and arthropod pest feeding of phytoseiid mites in Japanese pear greenhouse. Appl Entomol Zool 53:463–474

    Article  Google Scholar 

  • Jakobsson M, Rosenberg NA (2007) CLUMPP: a cluster matching and permutation program for dealing with label switching and multimodality in analysis of population structure. Bioinformatics 23:1801–1806

    Article  CAS  Google Scholar 

  • Jung C, Croft BA (2001) Ambulatory and aerial dispersal among specialist and generalist predatory mites (Acari: Phytoseiidae). Environ Entomol 30:1112–1118

    Article  Google Scholar 

  • Kalinowski ST, Taper ML, Marshall TC (2007) Revising how the computer program CERVUS accommodates genotyping error increases success in paternity assignment. Mol Ecol 16:1099–1106

    Article  Google Scholar 

  • McMurtry JA, Croft BA (1997) Life-styles of phytoseiid mites and their role in biological control. Annu Rev Entomol 42:291–321

    Article  CAS  Google Scholar 

  • Mikawa Y, Ishii H, Nagayoshi A, Sonoda S, Mori K, Toyama N (2019) PCR-based species identification applied in Japanese pear orchards to survey seasonal proportion changes of phytoseiid mite species. Appl Entomol Zool 54:133–139

    Article  CAS  Google Scholar 

  • Navajas MJ, Thistlewood HMA, Lagnel J, Hughes C (1998) Microsatellite sequences are under-represented in two mite genomes. Insect Mol Biol 7:249–256

    Article  CAS  Google Scholar 

  • Nishimura S, Hinomoto N, Takafuji A (2003) Isolation, characterization, inheritance and linkage of microsatellite markers in Tetranychus kanzawai (Acari: Tetranychidae). Exp Appl Acarol 31:93–103

    Article  CAS  Google Scholar 

  • Nishimura S, Hinomoto N, Takafuji A (2005) Gene flow and spatiotemporal genetic variation among sympatric populations of Tetranychus kanzawai (Acari: Tetranychidae) occurring on different host plants, as estimated by microsatellite gene diversity. Exp Appl Acarol 35:59–71

    Article  Google Scholar 

  • Nomikou M, Janssen A, Schraag R, Sabelis MW (2002) Phytoseiid predators suppress populations of Bemisia tabaci on cucumber plants with alternative food. Exp Appl Acarol 27:57–68

    Article  Google Scholar 

  • Osakabe M, Hinomoto N, Toda S, Komazaki S, Goka K (2000) Molecular cloning and characterization of a microsatellite locus found in an RAPD marker of a spider mite, Panonychus citri (Acari: Tetranychidae). Exp Appl Acarol 24:385–395

    Article  CAS  Google Scholar 

  • Peakall R, Smouse PE (2006) GENALEX 6: genetic analysis in excel population genetic software for teaching and research. Mol Ecol Notes 6:288–295

    Article  Google Scholar 

  • Schausberger P, Patiño-Ruiz JD, Osakabe M, Murata Y, Sugimoto N, Uesugi R, Walzer A (2016) Ultimate drivers and proximate correlates of polyandry in predatory mites. PLoS ONE 11:e0154355

    Article  Google Scholar 

  • Shimoda T, Kagawa Y, Mori K, Hinomoto N, Hiraoka T, Nakajima T (2017) A novel method for protecting slow-release sachets of predatory mites against environmental stresses and increasing predator release to crops. Biocontrol 62:495–503

    Article  CAS  Google Scholar 

  • Uesugi R, Osakabe M (2007) Isolation and characterization of microsatellite loci in the two-spotted spider mite, Tetranychus urticae (Acari: Tetranychidae). Mol Ecol Notes 7:290–292

    Article  CAS  Google Scholar 

  • van Lenteren JC (2001) A greenhouse without pesticides: fact or fantasy? Crop Prot 19:375–384

    Article  Google Scholar 

  • van Lenteren JC (2011) The state of commercial augmentative biological control: plenty of natural enemies, but a frustrating lack of uptake. Biocontrol 57:1–20

    Article  Google Scholar 

Download references

Acknowledgements

This work was financially supported by the Ministry of Agriculture, Forestry and Fisheries, Japan through the Science and Technology Research Promotion Program for the Agriculture, Forestry, Fisheries and Food Industry (28022C). The authors thank ISK Biosciences for providing the predator release system.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shoji Sonoda.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary file1 (PPTX 210 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mikawa, Y., Aizawa, M., Uesugi, R. et al. Molecular monitoring of Neoseiulus californicus released from sheltered slow-release sachets for spider mite control in a Japanese pear greenhouse. Exp Appl Acarol 80, 203–214 (2020). https://doi.org/10.1007/s10493-019-00463-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10493-019-00463-4

Keywords

Navigation