Skip to main content
Log in

Off-host survival of Eriophyoidea and remarks on their dispersal modes

  • Published:
Experimental and Applied Acarology Aims and scope Submit manuscript

Abstract

Dispersal of eriophyoid mites is crucial for the successful colonization of new plants. Literature suggests that their long-distance dispersal is through aerial transfer. During dispersal, eriophyoids might be captured in vapor or fine drops of water (perhaps most likely in clouds) where they might be protected against water loss and desiccation, but where they would have no food and be exposed to low temperatures and oxygen concentrations. Considerable resistance of these mites to these stressful environmental conditions is expected and has only partly been confirmed experimentally. The aim of the bioassays conducted here was to assess the survival of five eriophyoid species off their host plants, with poor oxygen availability under two temperature regimes. The bioassays were carried out on live mites dipped into two media used as microenvironments: (1) vaseline oil (used also as control treatment), and (2) water solution of Tween 80 (0.2%) and cycloheximide (50 mg/l). The bioassays were performed at 5 ± 1 and 25 ± 1 °C. The survival of mites was assessed weekly (5 °C) or daily (25 °C) by counting live and active specimens. The following species were subjected to the bioassays: Aceria caulobia (a stem gall mite), Aceria ficus (a vagrant mite), Cecidophyopsis hendersoni (a vagrant mite), Colomerus vitis (protogyne/male population and deutogyne morphs; a leaf gall mite) and Phytoptus avellanae (a bud gall mite). The survival rate of the mites was higher at 5 °C than at 25 °C under both experimental conditions. At 5 °C, the survival of almost all species was higher in the water solution (up to 6–7 weeks) than in vaseline oil (3–5 weeks). Longer survival was found for A. caulobia and P. avellanae (gall-making species) than for C. hendersoni and A. ficus (vagrant species). As expected, the deutogynes of C. vitis survived longer than its protogynes. The current results suggest that individuals of some of the tested species are well suited for withstanding cold, starvation and low oxygen rates, which could be found at higher atmospheric layers, within the clouds, allowing them an effective long-distance dispersal.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Amendola A, Cerioli NL (2006) L’ecotossicologia negli ambienti acquatici. APAT—Servizio Stampa ed Editoria, Roma. Rapporto 71/2006, pp 111 ISBN: 88-448-0188-4

  • Bergh JC (2001) Ecology and aerobiology of dispersing citrus rust mites (Acari: Eriophyidae) in central Florida. Environ Entomol 30:318–326. https://doi.org/10.1603/0046-225X-30.2.318

    Article  Google Scholar 

  • Bergh JC, McCoy CW (1997) Aerial dispersal of citrus rust mite (Acari: Eriophyidae) from Florida citrus groves. Popul Ecol 26:256–264. https://doi.org/10.1093/ee/26.2.256

    Article  Google Scholar 

  • Bernard MB, Horne PA, Hoffmann AA (2005) Eriophyoid mite damage in Vitis vinifera (grapevine) in Australia: Calepitrimerus vitis and Colomerus vitis (Acari: Eriophyidae) as the common cause of the widespread ‘Restricted Spring Growth’ syndrome. Exp Appl Acarol 35:83–109. https://doi.org/10.1007/s10493-004-1986-4

    Article  PubMed  Google Scholar 

  • Britto EPJ, Gondim MG Jr, Navia D, Flechtmann CHW (2008) A new deuterogynous mite (Acari: Eriophyoidae) with dimorphic males from Caesalpinia echinata (Caesalpiniaceae) from Brazil: description and biological observations. Int J Acarol 34:307–316. https://doi.org/10.1080/01647950808684547

    Article  Google Scholar 

  • Cox DR (1972) Regression models and life-tables. J R Stat Soc Ser B 34:187–220

    Google Scholar 

  • Cox DR, Oakes D (1984) Analysis of survival data. Chapman and Hall, London

    Google Scholar 

  • David PMM, Varadarajan MK (2001) A new glycerine drop trap method to sample eriophyoid mites. Entomon 26:97–100

    Google Scholar 

  • de Lillo E, Monfreda R (2004) «Salivary secretions» of eriophyoids (Acari: Eriophyoidea): first results of an experimental model. Exp Appl Acarol 34:291–306. https://doi.org/10.1007/s10493-004-0267-6

    Article  PubMed  Google Scholar 

  • de Lillo E, Skoracka A (2010) What’s “cool” on eriophyoid mites? Exp Appl Acarol 51:3–30. https://doi.org/10.1007/s10493-009-9297-4

    Article  PubMed  Google Scholar 

  • de Lillo E, Craemer C, Amrine JW, Nuzzaci G (2010) Recommended procedures and techniques for morphological studies of Eriophyoidea (Acari: Prostigmata). Exp Appl Acarol 51:283–307. https://doi.org/10.1007/s10493-009-9311-x

    Article  PubMed  Google Scholar 

  • Duffner K, Schruft G (1998) Die klebebandmethode zur erfassung des wanderungsverhaltens von krau selmilben. Deut Wein-Jahrb 49:201–206

    Google Scholar 

  • Duffner K, Schruft G, Guggenheim R (2001) Passive dispersal of the grape rust mite Calepitrimerus vitis Nalepa 1905 (Acari, Eriophyoidea) in vineyards. J Pest Sci 74:1–6. https://doi.org/10.1046/j.1439-0280.2001.01001.x

    Article  Google Scholar 

  • Frost WE (1997) Polyphenic wax production in Abacarus hystrix (Acari: Eriophyidae), and implications for migratory fitness. Physiol Entomol 22:37–46. https://doi.org/10.1111/j.1365-3032.1997.tb01138.x

    Article  Google Scholar 

  • Goolsby JA, Zonneveld R, Makinson JR, Pemberton RW (2005) Host-range and cold temperature tolerance of Floracarus perrepae Knihinicki & Boczek (Acari: Eriophyidae), a potential biological-control agent of Lygodium microphyllum (Pteridophyta: Lygodiaceae). Austr J Entomol 44(3):321–330. https://doi.org/10.1111/j.1440-6055.2005.00470.x

    Article  Google Scholar 

  • Harvey TL, Martin TJ (1988) Sticky tape method to measure cultivar effect on wheat curl mite population in wheat spikes. J Econ Entomol 81:731–734

    Article  Google Scholar 

  • Keifer HH (1975) Eriophyoidea Nalepa. Injurious Eriophyoid Mites. In: Jeppson LR, Keifer HH, Baker EW (eds) Mites injurious to economic plants. University California Press, Berkeley, pp 327–533

    Google Scholar 

  • Kiedrowicz A, Kuczyński L, Lewandowski M, Proctor H, Skoracka A (2017) Behavioural responses to potential dispersal cues in eriophyid mites. Sci Rep 7(3890):1–9. https://doi.org/10.1038/s41598-017-04372-7

    Article  CAS  Google Scholar 

  • Krantz GW (1973) Observations on the morphology and behavior of the filbert rust mite, Aculus comatus (Prostigmata: Eriophyoidea) in Oregon. Ann Entomol Soc Am 66:709–717

    Article  Google Scholar 

  • Lake EC, Smith MC, Pratt PD, Boughton AJ, Pemberton RW (2014) Dispersal and establishment of new populations of the biological control agent Floracarus perrepae (Acariformes: Eriophyidae) on Old World climbing fern, Lygodium microphyllum (Polypodiales: Lygodiaceae). Fla Entomol 97:827–829. https://doi.org/10.1653/024.097.0271

    Article  Google Scholar 

  • Laska A, Rector BG, Skoracka A, Kuczyński L (2019) Can your behaviour blow you away? Contextual and phenotypic precursors to passive aerial dispersal in phytophagous mites. Anim Behav 155:141–151. https://doi.org/10.1016/j.anbehav.2019.07.003

    Article  Google Scholar 

  • Lindquist EE, Oldfield GN (1996) Evolution of eriophyoid mites in relation to their host plants. In: Lindquist EE, Sabelis MW, Bruin J (eds) Eriophyoid mites—their biology, natural enemies and control. World crop pests, vol 6. Elsevier Science Publishing, Amsterdam, pp 277–300

    Chapter  Google Scholar 

  • Liu S, Li J-L, Guo K, Qiao H, Xu R, Chen J-M, Xu C-Q, Chen J (2016) Seasonal phoresy as an overwintering strategy of a phytophagous mite. Sci Rep 6:25483. https://doi.org/10.1038/srep25483

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Malagnini V, de Lillo E, Saldarelli P, Beber R, Duso C, Raiola A, Zanotelli L, Valenzano D, Giampetruzzi A, Morelli M, Ratti C, Causin R, Gualandri G (2016) Transmission of grapevine Pinot gris virus by Colomerus vitis (Acari: Eriophyidae) to grapevine. Arch Virol 161:2595–2599. https://doi.org/10.1007/s00705-016-2935-3

    Article  CAS  PubMed  Google Scholar 

  • Manson DCM, Oldfield GN (1996) Life forms, deutogyny, diapause and seasonal development. In: Lindquist EE, Sabelis MW, Bruin J (eds) Eriophyoid mites—their biology, natural enemies and control. World crop pests, vol 6. Elsevier Science Publishing, Amsterdam, pp 173–183

    Chapter  Google Scholar 

  • Melo JWS, Lima DB, Sabelis MW, Pallini A, Gondim Junior MGC (2014) Behaviour of coconut mites preceding take-off to passive aerial dispersal. Exp Appl Acarol 64:429–443. https://doi.org/10.1007/s10493-014-9835-6

    Article  CAS  PubMed  Google Scholar 

  • Michalska K, Skoracka A, Navia D, Amrine JW (2010) Behavioural studies on eriophyoid mites-an overview. Exp Appl Acarol 51:31–59. https://doi.org/10.1007/s10493-009-9319-2

    Article  PubMed  Google Scholar 

  • Monfreda R, Lekveishvili M, Petanović R, Amrine JW (2010) Collection and detection of eriophyoid mites. Exp Appl Acarol 51:273–282. https://doi.org/10.1007/s10493-009-9315-6

    Article  CAS  PubMed  Google Scholar 

  • Mukwevho L, Olckers T, Simelane DO (2017) Establishment, dispersal and impact of the flower-galling mite Aceria lantanae (Acari: Trombidiformes: Eriophyidae) on Lantana camara (Verbenaceae) in South Africa. Biol Control 107:33–40. https://doi.org/10.1016/j.biocontrol.2017.01.009

    Article  Google Scholar 

  • Ozman SK, Goolbsby JA (2005) Biology and phenology of the eriophyid mite Floracarus perrepae, on its native host in Australia, old world climbing fern Lygodium microphyllum. Exp Appl Acarol 35:197–213

    Article  Google Scholar 

  • Paynter Q, Gourlay AH, Rolando CA, Watt MS (2012) Dispersal of the scotch broom gall mite Aceria genistae: implications for biocontrol. N Z Plant Prot 65:81–84

    Google Scholar 

  • Reynolds DR, Reynolds AM, Chapman JW (2014) Non-volant modes of migration in terrestrial arthropods. Animal Migr 2:8–28. https://doi.org/10.2478/ami-2014-0002

    Article  Google Scholar 

  • Sabelis MW, Bruin J (1996) Evolutionary ecology: life history patterns, food plant choice and dispersal. In: Lindquist EE, Sabelis MW, Bruin J (eds) Eriophyoid mites—their biology, natural enemies and control. World crop pests, vol 6. Elsevier Science Publishing, Amsterdam, pp 329–366

    Chapter  Google Scholar 

  • Schliesske J (1977) Ausbreitung und Wirtspflanzenkreis von Aculus fockeui Nal. et Trt. (Acari: Eriophyidae) und der mit ihr Vergesellschaften arten. Meded Fac Landbouw Rijk Gent 42:1343–1351

    Google Scholar 

  • Shevtchenko VG, DeMillo AP (1968) Zhiznennyi tsike Trisetacus kirghisorum V. Shev. (Acarina, tetrapodili)—breditelya cemyan Juniperus semiglobosa Rgl. [Life cycle of Trisetacus kirghisorum V. Shev. (Acarina, Tetrapodili)—pest of Juniperus semiglobosa seeds]. Vestnik Leningr Univ Ser Biol 3:60–67

    Google Scholar 

  • Slykhuis JT (1955) Aceria tulipae Keifer (Acarina: Eriophyidae) in relation to the spread of wheat streak mosaic. Phytopatology 45:116–128

    Google Scholar 

  • SPSS IBM Corp. (2011) IBM SPSS statistics for windows, version 20.0. IBM Corp, Armonk

    Google Scholar 

  • Townsend L, Johnson D (1996) Wheat streak mosaic virus and the wheat curl mite. University of Kentucky, ENTFACT-117. www.ca.uky.edu/entomology/entfacts/ef117.asp. Accessed 22 May 2017

  • Wosula EN, McMechan AJ, Hein GL (2015) The effect of temperature, relative humidity, and virus infection status on off-host survival of the Wheat Curl Mite (Acari: Eriophyidae). J Econ Entomol 108:1545–1552. https://doi.org/10.1093/jee/tov185

    Article  CAS  PubMed  Google Scholar 

  • Zhao S, Amrine JW (1997a) Investigation of snowborne mites (Acari) and relevancy to dispersal. Int J Acarol 23:209–213

    Article  Google Scholar 

  • Zhao S, Amrine JW (1997b) A new method for studying aerial dispersal behaviour of eriophyoid mites (Acari: Eriophyoidea). Syst Appl Acar 2:107–110

    Google Scholar 

Download references

Acknowledgements

This research was supported by a Grant from Centro Trasferimento tecnologico—Fondazione Edmund Mach, San Michele all’Adige, Trento, Italy (CTT-FEM) and University of Bari Aldo Moro, Italy. The authors are grateful to Profs. James W. Amrine Jr. (University of West Virginia, USA), Antonella Di Palma (University of Foggia, Italy), Mariusz Lewandowski (Warsaw University of Life Sciences – SGGW, Poland), drs. Sauro Simoni (CREA, Florence, Italy) and Samuel Bolton (Department of Agricultural and Consumer Services, Gainsville, Florida, USA) for their critical revision and suggestions. The manuscript is part of D. Valenzano’s PhD thesis.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Enrico de Lillo.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Valenzano, D., Bari, G., Valeria, M. et al. Off-host survival of Eriophyoidea and remarks on their dispersal modes. Exp Appl Acarol 79, 21–33 (2019). https://doi.org/10.1007/s10493-019-00417-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10493-019-00417-w

Keywords

Navigation