Skip to main content
Log in

Predation on heterospecific larvae by adult females of Kampimodromus aberrans, Amblyseius andersoni, Typhlodromus pyri and Phytoseius finitimus (Acari: Phytoseiidae)

  • Published:
Experimental and Applied Acarology Aims and scope Submit manuscript

Abstract

The predatory mites Kampimodromus aberrans (Oudemans), Amblyseius andersoni (Chant), Typhlodromus pyri Scheuten and Phytoseius finitimus Ribaga are important biological control agents in orchards and vineyards in Europe and elsewhere. They can coexist in the same habitat and engage in intraguild predation (IGP). In the laboratory we evaluated the longevity, fecundity and prey consumption of females of these predatory mites fed with heterospecific larvae considered as intraguild prey (IG-prey). The survival and age-specific oviposition curves of predatory mites fed with pollen were compared with those obtained on different IG-prey. We assessed the prey conversion rate into eggs expressed by the different IG-predator as an indicator of their capacity to persist when prey is diminishing. Results suggest that A. andersoni should be considered the superior intraguild predator but the least efficient in food conversion. Phytoseius finitimus appeared to suffer from intraguild predation, and its efficiency in food conversion was not superior to that of K. aberrans and T. pyri. The profiles of K. aberrans and T. pyri were less definite. The comparison between pollen and IG-prey diets confirmed the positive effect of pollen on the fecundity of all four predatory mite species. Fecundity was higher on pollen than on IG-prey. We can suggest that A. andersoni have the potential to exclude the other predatory mites only at high food resource availability, whereas low levels of food availability can favor the other species in IGP.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Adar E, Inbar M, Gal S, Gan-Mor S, Palevsky E (2014) Pollen on-twine for food provisioning and oviposition of predatory mites in protected crops. Biocontrol 59:307–317

    Google Scholar 

  • Addison JA, Hardman JM, Walde SJ (2000) Pollen availability for predaceous mites on apple: spatial and temporal heterogeneity. Exp Appl Acarol 24:1–18

    CAS  PubMed  Google Scholar 

  • Ahmad S, Pozzebon A, Duso C (2013) Augmentative releases of the predatory mite Kampimodromus aberrans in organic and conventional apple orchards. Crop Prot 52:47–56

  • Allison PD (1995) Survival analysis using the SAS system: a practical guide. SAS Institute, Cary

    Google Scholar 

  • Blommers LHM (1994) Integrated pest management in European apple orchards. Ann Rev Entomol 39:213–241

    Google Scholar 

  • Briggs CJ, Borer ET (2005) Why short-term experiments may not allow long-term predictions about intraguild predation. Ecol Appl 15:1111–1117

    Google Scholar 

  • Camporese P, Duso C (1996) Different colonization patterns of phytophagous and predatory mites (Acari: Tetranychidae, Phytoseiidae) on three grape varieties: a case study. Exp Appl Acarol 20:1–22

    Google Scholar 

  • Chant DA (1959) Phytoseiid mites (Acarina: Phytoseiidae). Part I. Bionomics of seven species in southeastern England. Part II. A taxonomic review of the family Phytoseiidae, with descriptions of 38 new species. Can Entomol 91:166

    Google Scholar 

  • Choh Y, van der Hammen T, Sabelis MW, Janssen A (2010) Cues of intraguild predators affect the distribution of intraguild prey. Oecologia 163:335–340

    PubMed Central  PubMed  Google Scholar 

  • Choh Y, Ignacio M, Sabelis MW, Janssen A (2012) Predator-prey role reversals, juvenile experience and adult antipredator behaviour. Sci Rep 2:728

    PubMed Central  PubMed  Google Scholar 

  • Choh Y, Takabayashi J, Sabelis MW, Janssen A (2014) Witnessing predation can affect strength of counterattack in phytoseiids with ontogenetic predator-prey role reversal. Anim Behav 93:9–13

    Google Scholar 

  • Collyer E (1964) A summary of experiments to demonstrate the role of Typhlodromus pyri Scheuten in the control of Panonychus ulmi (Koch) in England. Acarologia 6:363–371

    Google Scholar 

  • Croft BA, Croft MB (1993) Larval survival and feeding by immature Metaseiulus occidentalis, Neoseiulus fallacis, Amblyseius andersoni and Typhlodromus pyri on life stage groups of Tetranychus urticae Koch and phytoseiid larvae. Exp Appl Acarol 17:685–693

    Google Scholar 

  • Croft BA (1994) Biological control of apple mites by a phytoseiid mite complex and Zetzellia mali: long-term effects and impact of azinphosmethyl on colonization by Amblyseius andersoni (Acari: Phytoseiidae). Environ Entomol 23:1317–1325

    Google Scholar 

  • Croft BA, Croft MB (1996) Intra- and interspecific predation among adult female phytoseiid mites (Acari: Phytoseiidae): effects on survival and reproduction. Environ Entomol 25:853–858

    Google Scholar 

  • Croft BA, MacRae IV (1992a) Biological control of apple mites by mixed populations of Metaseiulus occidentalis (Nesbitt) and Typhlodromus pyri Scheuten (Acari: Phytoseiidae). Environ Entomol 21:202–209

    Google Scholar 

  • Croft BA, MacRae IV (1992b) Persistence of Typhlodromus pyri and Metaseiulus occidentalis (Acari: Phytoseiidae) on apple after release and competition with Zetzellia mali (Acari: Stigmaeidae). Environ Entomol 21:1168–1177

    Google Scholar 

  • Croft BA, MacRae IV, Currans KG (1992) Factors affecting biological control of apple mites by mixed populations of Metaseiulus occidentalis and Typhlodromus pyri. Exp Appl Acarol 14:343–355

    Google Scholar 

  • Croft BA, Zhang ZQ (1995) Assessing roles of individual species in a hytoseiid complex using adult females and immature traits: relevance to biological control. In: Proceedings of IX International Congress Acrol, Columbus, OH

  • Croft BA, Kim SS, Kim DI (1996) Intra- and interspecific predation on four life stage groups by the adult females of Metaseiulus occidentalis, Typhlodromus pyri, Neoseiulus fallacis and Amblyseius andersoni. Exp Appl Acarol 20:435–444

    Google Scholar 

  • Croft BA, Monetti LN, Pratt PD (1998) Comparative life histories and predation types: are Neoseiulus californicus and N. fallacis (Acari: Phytoseiidae) similar type II selective predators of spider mites? Environ Entomol 27:531–538

    Google Scholar 

  • Daugherty MP, Harmon JP, Briggs CJ (2007) Trophic supplements to intraguild predation. Oikos 116:662–677

    Google Scholar 

  • Dicke M, Sabelis MW, de Jong M, Alers MPT (1990) Do phytoseiide mites select the best prey species in term of reproductive success. Exp Appl Acarol 8:161–173

    Google Scholar 

  • Diehl S (2003) The evolution and maintenance of omnivory: dynamic constraints and the role of food quality. Ecology 84:2557–2567

    Google Scholar 

  • Diehl S, Feissel M (2000) Effects of enrichment on three-level food chains with omnivory. Am Nat 155:200–218

    PubMed  Google Scholar 

  • Duso C (1989) Role of the predatory mites Amblyseius aberrans (Oud.), Typhlodromus pyri Scheuten and Amblyseius andersoni (Chant) (Acari, Phytoseiidae) in vineyards. I. The effects of single or mixed phytoseiid population releases on spider mite densities (Acari, Tetranyehidae). J Appl Entomol 107:474–492

    Google Scholar 

  • Duso C, Camporese P (1991) Developmental times and oviposition rates of predatory mites Typhlodromus pyri and Amblyseius andersoni (Acari: Phytoseiidae) reared on different foods. Exp Appl Acarol 13:117–128

    Google Scholar 

  • Duso C, Pasqualetto C (1993) Factors affecting the potential of phytoseiid mites (Acari: Phytoseiidae) as biocontrol agents in North-Italian vineyards. Exp Appl Acarol 17:241–258

    Google Scholar 

  • Duso C, Vettorazzo E (1999) Mite population dynamics on different grape varieties with or without phytoseiids released (Acari: Phytoseiidae). Exp Appl Acarol 23:741–763

    CAS  PubMed  Google Scholar 

  • Duso C, Pasqualetto C, Camporese P (1991) Role of the predatory mites Amblyseius aberrans (Oud.), Typhlodromus pyri Scheuten and Amblyseius andersoni (Chant) (Acari, Phytoseiidae) in vineyards. II. Minimum releases of A. aberrans and T. pyri to control spider mite populations (Acari, Tetranychidae). J Appl Entomol 112:298–308

    Google Scholar 

  • Duso C, Malagnini V, Paganelli A (1997) Indagini preliminari sul rapporto tra polline e Kampimodromus aberrans (Acari: Phytoseiidae) su Vitis vinifera L. Allionia 35:229–239

    Google Scholar 

  • Duso C, Pozzebon A, Capuzzo C, Bisol PM, Otto S (2003) Grape downy mildew spread and mite seasonal abundance in vineyards: evidence for the predatory mites Amblyseius andersoni and Typhlodromus pyri. Biol Control 27:229–241

    Google Scholar 

  • Duso C, Malagnini V, Paganelli A, Aldegheri L, Bottini M, Otto S (2004) Pollen availability and abundance of predatory phytoseiid mites on natural and secondary hedgerows. BioControl 49:397–415

    Google Scholar 

  • Duso C, Fanti M, Pozzebon A, Angeli G (2009) Is the predatory mite Kampimodromus aberrans a candidate for the control of phytophagous mites in European apple orchards? BioControl 54:369–382

    Google Scholar 

  • Duso C, Pozzebon A, Kreiter S, Tixier MS, Candolfi MP (2012) Management of phytophagous mites in European vineyards. In: Bostanian NJ, Vincent C, Isaacs R (eds) Arthropod management in vineyards: pests, approaches, and future directions. Springer, New York, pp 191–217

    Google Scholar 

  • El Borolossy M, Fischer-Colbrie P (1989) Untersuchungen zum Artenspektrum von Raubmilben im o¨sterreichischen Obst- und Weinbau. Pflanzenschutzberichte 50:49–63

    Google Scholar 

  • Engel R, Ohnesorge B (1994) Die Rolle von Ersatznahrung und Mikroklima im System Typhlodromus pyri Scheuten (Acari, Phytoseiidae)—Panonychus ulmi Koch (Acari, Tetranychidae) auf Weinreben II. Freilandversuche. J Appl Entomol 118:224–238

    Google Scholar 

  • Ferreira JAM, Cunha DFS, Pallini A, Sabelis MW, Janssen A (2011) Leaf domatia reduce intraguild predation among predatory mites. Ecol Entomol 36:435–441

  • Gnanvossoua D, Hanna R, Yaninek JS, Toko M (2005) Comparative life history traits of three neotropical phytoseiid mites maintained on plant-based diets. Biol Control 35:32–39

    Google Scholar 

  • Heithaus MR (2001) Habitat selection by predators and prey in communities with asymmetrical intraguild predation. Oikos 92:542–554

    Google Scholar 

  • Helle W, Sabelis MW (1985) Spider mites, their biology, natural enemies and control, vol 1A. Elsevier, Amsterdam

    Google Scholar 

  • Holt RD, Polis GA (1997) A theoretical framework for intraguild predation. Am Nat 149:745–764

    Google Scholar 

  • Holt RD, Huxel GR (2007) Alternative prey and the dynamics of intraguild predation: theoretical perspectives. Ecololgy 88:2706–2712

    Google Scholar 

  • Ivancich Gambaro P (1975) Observations on the biology and behaviour of the predaceous mite Typhlodromus italicus [Acarina: Phytoseiidae] in peach orchards. Entomophaga 20:171–177

    Google Scholar 

  • James DG (1989) Overwintering of Amblyseius victoriensis (Womersley) (Acafina: Phytoseiidae) in southern New South Wales. Gen Appl Entomol 21:51–55

    Google Scholar 

  • James DG, Whitney J (1993) Cumbungi pollen: A laboratory diet for Amblyseius victoriensis (Womersley) and Typhlodromus doreenae Schicha (Acari: Phytoseiidae). J Aust Entomol Soc 32:5–6

    Google Scholar 

  • Janssen A, Faraji F, van der Hammen T, Magalhaes S, Sabelis MW (2002) Interspecific infanticide deters predators. Ecol Lett 5:490–494

    Google Scholar 

  • Kasap I (2005) Life-history traits of predaceous mites Kampimodromus aberrans (Oudemans) (Acarina: Phytoseiidae) on four different types of food. Biol Control 35:40–45

    Google Scholar 

  • Kennett CE, Flaherty DL, Hoffmann RW (1979) Effect of wind-borne pollens on the population dynamics of Amblyseius hibisci (Acarina: Phytoseiidae). Entomophaga 24:83–98

    Google Scholar 

  • Kreiter S, Tixier MS, Auger P, Muckensturm N, Sentenac G, Doublet B, Weber M (2000) Phytoseiid mites of vineyards in France (Acari: Phytoseiidae). Acarologia 41:77–96

    Google Scholar 

  • Lange E, Trautmann M (1994) Zum Konkurrenzverhalten der Raubmilbenarten Amblyseius andersoni (Chant) und Typhlodromus pyri (Scheuten). Erwerbsgartenbau 36:63–65

    Google Scholar 

  • Lorenzon M, Pozzebon A, Duso C (2012) Effects of potential food sources on biological and demographic parameters of the predatory mites Kampimodromus aberrans, Typhlodromus pyri and Amblyseius andersoni. Exp Appl Acarol 58:259–278

    PubMed  Google Scholar 

  • Lorenzon M, Pozzebon A, Duso C (2015) Feeding habits of overwintered predatory mites inhabiting European vineyards. BioControl. doi:10.1007/s10526-015-9679-y

    Google Scholar 

  • MacRae IV, Croft BA (1993) Influence of temperature on interspecific predation and cannibalism between Metaseiulus occidentalis (Nesbitt) and Typhlodromus pyri Scheuten (Acari: Phytoseiidae). Environ Entomol 22:770–775

    Google Scholar 

  • MacRae IV, Croft BA (1997) Intra- and interspecific predation by adult female Metaseiulus occidentalis and Typhlodromus pyri (Acari: Phytoseiidae) when provisioned with varying densities and ratios of Tetranychus urticae (Acari: Tetranychidae) and phytoseiid larvae. Exp Appl Acarol 21:235–245

    Google Scholar 

  • McMurtry JA (1982) The use of phytoseiids for biological control: progress and future prospects. In: Hoy MA (ed) Recent advances in knowledge of the Phytoseiidae. Agricultural Sciences Publications, University of Califoria, Berkeley

    Google Scholar 

  • McMurtry JA, Johnson HG (1965) Some factors influencing the abundance of the predaceous mites Amblyseius hibisci in southern California (Acarina: Phytoseiidae). Ann Entomol Soc Am 58:49–56

    Google Scholar 

  • McMurtry JA, Rodriguez JG (1987) Nutritional ecology of phytoseiid mites. In: Slansky F Jr, Rodriguez JC (eds) Nutritional ecology of insects, mites and spiders. Wiley, New York, pp 609–644

    Google Scholar 

  • McMurtry JA, Croft BA (1997) Life-styles of phytoseiid mites and their roles in biological control. Ann Rev Entomol 42:291–321

    CAS  Google Scholar 

  • McMurtry JA, de Moraes GJ, Johnson HG (1991) Arrestment responses of some phytoseiid mites to extracts of Oligonychus punicae, Tetranychus urticae and pollen. Israel J Entomol 25:29–34

    Google Scholar 

  • McMurtry JA, De Moraes GJ, Sourassou NF (2013) Revision of the lifestyles of phytoseiid mites (Acari: Phytoseiidae) and implications for biological control strategies. Syst Appl Acarol 18:297–320

  • Monetti LN, Croft BA (1997) Neoseiulus californicus (McGregor) and Neoseiulus fallacies (Garman): larval responses to prey and humidity, nymphal feeding drive and nymphal predation on phytoseiid eggs. Exp Appl Acarol 21:225–234

    Google Scholar 

  • Montserrat A, Magalhaes S, Sabelis MV, De Roos AM, Janssen A (2008) Patterns of exclusion in an intraguild predator-prey system depends on initial conditions. J Anim Ecol 77:624–630

    PubMed  Google Scholar 

  • Montserrat M, Magalhães S, Sabelis MW, de Roos AM, Janssen A (2012) Invasion success in communities with reciprocal intraguild predation depends on the stage structure of the resident population. Oikos 121:67–76

    Google Scholar 

  • Murdoch WW (1969) Switching in general predators experiments on predator specificity and stability of prey populations. Ecol Monogr 39:335–354

    Google Scholar 

  • Mylius SD, Klumpers K, de Roos AM, Persson L (2001) Impact of intraguild predation and stage structure on simple communities along a productivity gradient. Am Nat 158:259–276

    CAS  PubMed  Google Scholar 

  • Nicòtina M, Cioffi E (1998) Distribution of phytoseiid mites (Acarina: Phytoseiidae) in hazel-nut-growing areas in Campania. Redia 81:115–124

    Google Scholar 

  • Nomikou M, Janssen A, Sabelis MW (2003) Phytoseiid predators of whiteflies feed and reproduce on non-prey food sources. Exp Appl Acarol 31:15–26

    PubMed  Google Scholar 

  • Onzo A, Hanna R, Negloh K, Toko M, Sabelis MW (2005) Biological control of cassava green mite with exotic and indigenous phytoseiid predators—effects of intraguild predation and supplementary food. Biol Control 33:143–152

    Google Scholar 

  • Overmeer WPJ (1981) Notes on breeding phytoseiid mites from orchards (Acarina: Phytoseiidae) in the laboratory. Med Fac Landbouwwet Rijksuniv Gent 46:503–509

    Google Scholar 

  • Overmeer WPJ (1985) Alternative prey and other food resources. In: Helle W, Sabelis MW (eds) Spider mites: their biology, natural enemies and control, vol 1B. Elsevier, Amsterdam, pp 131–137

    Google Scholar 

  • Papaioannou-Souliotis P, Markoyiannaki-Printziou D, Rumbos I, Adamopoulos I (1999) Phytoseiid mites associated with vine in various provinces of Greece: a contribution to faunistics and biogeography, with reference to eco-ethological aspects of Phytoseius finitimus (Ribaga) (Acari: Phytoseiidae). Acarologia 40:113–125

    Google Scholar 

  • Pappas ML, Xanthis C, Samaras K, Koveos DS, Broufas GD (2013) Potential of the predatory mite Phytoseius finitimus (Acari: Phytoseiidae) to feed and reproduce on greenhouse pests. Exp Appl Acarol 61:387–401

    PubMed  Google Scholar 

  • Pina T, Argolo PS, Urbaneja A, Jacas JA (2012) Effect of pollen quality on the efficacy of two different life-style predatory mites against Tetranychus urticae in citrus. Biol Control 61:176–183

  • Polis GA, Holt RD (1992) Intraguild predation: the dynamics of complex trophic interactions. Trends Ecol Evol 7:151–154

    CAS  PubMed  Google Scholar 

  • Polis GA, Myers CA, Holt RD (1989) The ecology and evolution of intraguild predation: potential competitors that eat each other. Annu Rev Ecol Syst 20:297–330

    Google Scholar 

  • Pozzebon A, Duso C (2008) Grape downy mildew Plasmopara viticola, an alternative food for generalist predatory mites occurring in vineyards. Biol Control 45:441–449

    Google Scholar 

  • Pozzebon A, Loeb GM, Duso C (2009) Grape powdery mildew as a food source for generalist predatory mites occurring in vineyards: effects on life-history traits. Ann Appl Biol 155:81–89

    Google Scholar 

  • Pozzebon A, Ahmad S, Tirello P, Lorenzon M, Duso C (2014) Does pollen availability mitigate the impact of pesticides on generalist predatory mites? BioControl 59:585–596

    CAS  Google Scholar 

  • Rosenheim JA, Kaya HK, Ehler LE, Marois JJ, Jaffee BA (1995) Intraguild predation among biological control agents: theory and evidence. Biol Control 5:303–335

    Google Scholar 

  • SAS Institute Inc (1999) SAS/STAT user’s guide, version 8. SAS Institute Inc, Cary

    Google Scholar 

  • Schausberger P (1991) Vergleichende Untersuchungen zum Lebensverlauf, die Erstellung von Lebenstafeln und die Vermehrungskapazit¨at von Amblyseius aberrans Oud. und Amblyseius finlandicus Oud. (Acari: Phytoseiidae). Pflanzenschutzberichte 52:53–71

    Google Scholar 

  • Schausberger P (1992) Vergleichende Untersuchungen u¨ber den Einfluß unterschiedlicher Nahrung auf die ra¨imaginalentwicklung und die Reproduktion von Amblyseius aberrans Oud. Und Amblyseius finlandicus Oud. (Acarina: Phytoseiidae). J Appl Entomol 113:476–486

    Google Scholar 

  • Schausberger P (1997) Inter- and intraspecific predation on immatures by adult females in Euseius finlandicus, Typhlodromus pyri and Kampimodromus aberrans (Acari: Phytoseiidae). Exp Appl Acarol 21:131–150

    Google Scholar 

  • Schausberger P (1998) Survival, development and fecundity in Euseius finlandicus, Typhlodromus pyri, and Kampimodromus aberrans feeding on the San Jose scale Quadraspidiotus perniciosus. J Appl Entomol 122:53–56

    Google Scholar 

  • Schausberger P (1999a) Predation preference of Typhlodromus pyri and Kampimodromus aberrans (Acari, Phytoseiidae) when offered con- and heterospecific immature life stages. Exp Appl Acarol 23:389–398

    Google Scholar 

  • Schausberger P (1999b) Juvenile survival and development in Euseius finlandicus, Typhlodromus pyri and Kampimodromus aberrans (Acari: Phytoseiidae) feeding on con- and heterospecific immatures. Exp Appl Acarol 23:297–307

    Google Scholar 

  • Schausberger P, Croft BA (1999) Predation on and discrimination between con- and heterospecific eggs among specialist and generalist phytoseiid mite species (Acari: Phytoseiidae). Environ Entomol 28:523–528

    Google Scholar 

  • Schausberger P, Croft BA (2000a) Nutritional benefits of intraguild predation and cannibalism among generalist and specialist phytoseiid mites. Ecol Entomol 25:474–480

    Google Scholar 

  • Schausberger P, Croft BA (2000b) Cannibalism and intraguild predation among phytoseiid mites: are aggressiveness and prey preference related to diet specialization? Exp Appl Acarol 24:709–725

    CAS  PubMed  Google Scholar 

  • Schausberger P, Walzer A (2001) Combined versus single species release of predaceous mites: Predator-predator interactions and pest suppression. Biol Control 20:269–278

    Google Scholar 

  • Seelmann L, Auer A, Hoffmann D, Schausberger P (2007) Leaf pubescence mediates intraguild predation between predatory mites. Oikos 116:807–817

    Google Scholar 

  • Solomon MG, Cross JV, Fitzgerald JD, Campbell CAM, Jolly RL, Olszak RW, Niemczyk E, Vogt H (2000) Biocontrol of pests of apples and pears in northern and central Europe-3 Predators. Biocontrol Sci Technol 10:91–128

    Google Scholar 

  • Szabó Á, Pénzes B, Sipos P, Hegyi T, Hajdú Z, Markó V (2014) Pest management systems affect composition but not abundance of phytoseiid mites (Acari: Phytoseiidae) in apple orchards. Exp Appl Acarol 62:525–537

  • Tanabe K, Namba T (2005) Omivory creates chaos in simple food web models. Ecology 86:3411–3414

    Google Scholar 

  • Tanigoshi LK, Megevand B, Yaninek JS (1993) Non-prey food for subsistence of Amblyseius idaeus (Acari: Phytoseiidae) on Cassava in Africa. Exp Appl Acarol 17:91–96

    Google Scholar 

  • Tixier MS, Lopes I, Blanc G, Dedieu JL, Kreiter S (2014) Phytoseiid mite diversity (Acari: Mesostigmata) and assessment of their spatial distribution in French apple orchards. Acarologia 54:97–111

  • van Baalen M, Krivan V, van Rijn PCJ, Sabelis MW (2001) Alternative food, switching predators, and the persistence of predator-prey systems. Am Nat 157:513–524

    Google Scholar 

  • van Rijn PCJ, Tanigoshi LK (1999) Pollen as food for the predatory mites Iphiseius degenerans and Neoseiulus cucumeris (Acari: Phytoseiidae): dietary range and life history. Exp Appl Acarol 23:785–802

    Google Scholar 

  • Walzer A, Schausberger P (2011a) Sex-specific developmental plasticity of generalist and specialist predatory mites (Acari: Phytoseiidae) in response to food stress. Biol J Lin Soc 102:650–660

    Google Scholar 

  • Walzer A, Schausberger P (2011b) Threat-sensitive anti-intraguild predation behaviour: Maternal strategies to reduce offspring predation risk in mites. Anim Behav 81:177–184

    PubMed Central  PubMed  Google Scholar 

  • Walzer A, Schausberger P (2012) Integration of multiple intraguild predator cues for oviposition decisions by a predatory mite. Anim Behav 84:1411–1417

    PubMed Central  PubMed  Google Scholar 

  • Walzer A, Schausberger P (2013a) Integration of multiple cues allows threat-sensitive anti-intraguild predator responses in predatory mites. Behaviour 150:115–132

    PubMed Central  PubMed  Google Scholar 

  • Walzer A, Schausberger P (2013b) Phenotypic plasticity in anti-intraguild predator strategies: mite larvae adjust their behaviours according to vulnerability and predation risk. Exp Appl Acarol 60:95–115

    PubMed Central  PubMed  Google Scholar 

  • Walzer A, Lepp N, Schausberger P (2015) Compensatory growth following transient intraguild predation risk in predatory mites. Oikos 124:603–609

    PubMed Central  PubMed  Google Scholar 

  • Yao DS, Chant DA (1989) Population growth and predation interference between two species of predatory phytoseiid mites (Acarina: Phytoseiiidae) in interactive systems. Oecologia 80:443–455

    Google Scholar 

  • Zhang ZQ, Croft BA (1995a) Intraspecific competition in immature Amblyseius fallacis, Amblyseius andersoni, Typhlodromus occidentalis and Typhlodromus pyri (Acari: Phytoseiidae). Exp Appl Acarol 19:65–77

    Google Scholar 

  • Zhang ZQ, Croft BA (1995b) Interspecific competition and predation between immature Amblyseius fallacis, Amblyseius andersoni, Typhlodromus occidentalis and Typhlodromus pyri (Acari: Phytoseiidae). Exp Appl Acarol 19:247–257

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alberto Pozzebon.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ahmad, S., Pozzebon, A. & Duso, C. Predation on heterospecific larvae by adult females of Kampimodromus aberrans, Amblyseius andersoni, Typhlodromus pyri and Phytoseius finitimus (Acari: Phytoseiidae). Exp Appl Acarol 67, 1–20 (2015). https://doi.org/10.1007/s10493-015-9940-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10493-015-9940-1

Keywords

Navigation