Skip to main content
Log in

Evaluation of selected acaricides against twospotted spider mite (Acari: Tetranychidae) on greenhouse cotton using multispectral data

  • Published:
Experimental and Applied Acarology Aims and scope Submit manuscript

Abstract

Twospotted spider mite (TSSM), Tetranychus urticae Koch, is an early season pest of cotton in the mid-southern USA and causes reduction in yield, fiber quality and impaired seed germination. Objectives of this study were to investigate the efficacy of abamectin and spiromesifen with two divergent LC50 values against TSSM in a computer-operated spray table which simulated aerial application parameters. Combined with a pressure of 276 kPa and a speed of 8 km/h, a 650033 nozzle delivered a spray rate of 18.7 L/ha. The active ingredient rates were 1/8, 1/4, 1/2 and the lowest label recommended rates for early season cotton. The intent was to study efficacy relative to deposition characteristics at active ingredient rates equal to and lower than those recommended by the label. Spectral reflectance values from a multispectral optical sensor were used to calculate the Normalized Difference Vegetation Index which numerically described the surface reflectance characteristics of cotton canopies concomitant to damage caused by T. urticae in the greenhouse. Water sensitive paper samplers described spray droplet spectra parameters (Dv0.1, Dv0.5 and Dv0.9, µm) and percent spray coverage. The volume median diameter (Dv0.5, µm) for abamectin and spiromesifen were respectively, 218 and 258 at one-half rate of the lowest label rate. These spray droplets were well above the driftable portions of the spray volume (<141 µm) for both abamectin and spiromesifen. Efficacy evaluations indicated that spiromesifen was more effective than abamectin in controlling T. urticae on early season cotton at one-half rate of the lowest label rate. Results reported herein demonstrate that the multispectral optical sensor in lieu of manually counting T. urticae appears to be a promising tool for efficacy evaluations against acaricides for early season plants grown in greenhouses.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Abro G, Dybas R, Green A, Wright D (1989) Translaminar and residual activity of avermectin B1 against Plutella xylostella (Lepidoptera: Plutellidae). J Econ Entomol 82:385–388

    Article  CAS  Google Scholar 

  • Adamczyk JJ, Jr., Lorenz GM (2012) 65th annual conference report on cotton insect research and control In: Beltwide Cotton Conference, Orlando, FL, vol 2. National Cotton Council, Memphis, TN, p 981–1000

  • Alm SR, Reichard DL, Hall FR (1987) Effects of sray drop size and distribution of drops containing Bifenthrin on Tetranychus urticae (Acari: Tetranychidae). J Econ Entomol 80:517–520

    Article  CAS  Google Scholar 

  • Baker J, Connell W (1963) The morphology of the mouthparts of Tetranychus atlanticus and observations on feeding by this mite on soybeans. Ann Entomol Soc Am 56:733–736

    Article  Google Scholar 

  • Beers E, Hoyt S, Burts E (1990) Effect of tree fruit species on residual activity of avermectin BI to Tetranychus urticae and Panonychus ulmi. J Econ Entomol 83:961–964

    Article  Google Scholar 

  • Beers E, Andersen A, Brown R (1997) Absorption and translaminar activity of abamectin in apple and pear foliage as determined by spider mite (Acari: Tetranychidae) mortality. J Econ Entomol 90:566–573

    Article  Google Scholar 

  • Bouse L, Whisenant S, Carlton J (1992) Aerial spray deposition on mesquite. Trans ASAE (USA) 35:51–59

    Article  Google Scholar 

  • Brandenburg R, Kennedy G (1987) Ecological and agricultural considerations in the management of twospotted spider mite (Tetranychus urticae Koch). Agric Zool Rev 2:185–236

    Google Scholar 

  • Bretschneider T, Benet-Buchholz J, Fischer R, Nauen R (2003) Spirodiclofen and spiromesifen–novel acaricidal and insecticidal tetronic acid derivatives with a new mode of action. CHIMIA Int J Chem 57:697–701

    Article  CAS  Google Scholar 

  • Bretschneider T, Fischer R, Nauen R (2007) Inhibitors of lipid synthesis (acetyl-CoA-carboxylase inhibitors). Modern crop protection compounds. Wiley, Weinheim, pp 909–925

    Google Scholar 

  • Chapple AC, Downer RA, Hall FR (1993) Effects of spray adjuvants on swath patterns and droplet spectra for a flat-fan hydraulic nozzle. Crop Prot 12:579–590

    Article  CAS  Google Scholar 

  • Cloyd RA, Galle CL, Keith SR, Kemp KE (2009) Evaluation of persistence of selected miticides against the twospotted spider mite, Tetranychus urticae. HortScience 44:476–480

    Google Scholar 

  • Dekeyser MA (2005) Acaricide mode of action. Pest Manage Sci 61:103–110

    Article  CAS  Google Scholar 

  • Dermauw W, Wybouw N, Rombauts S, Menten B, Vontas J, Grbić M, Clark RM, Feyereisen R, Van Leeuwen T (2013) A link between host plant adaptation and pesticide resistance in the polyphagous spider mite Tetranychus urticae. Proc Natl Acad Sci 110:E113–E122

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Downer R, Wolf T, Chapple A, Hall F, Hazen J (1995) Characterizing the impact of drift management adjuvants on the dose transfer process. In: Proc. Fourth Int. Symp. on Adjuvants for Agrochemicals. Rotorua, New Zealand, p 138–143

  • Dybas RA (1989) Abamectin use in crop protection Ivermectin and abamectin. Springer, New York, pp 287–310

    Book  Google Scholar 

  • Elsik CM, Stridde HM, Schweiner TM (2010) Spray drift reduction technology adjuvant evaluation. ASTM Int 7:1–19

    Google Scholar 

  • EPA (2014) Pesticide Product Labels. In: National Service Center for Environmental Publications. http://www.epa.gov/pesticides/regulating/labels/product-labels.htm

  • Fellous S, Angot G, Orsucci M, Migeon A, Auger P, Olivieri I, Navajas M (2014) Combining experimental evolution and field population assays to study the evolution of host range breadth. J Evol Biol 27:911–919

    Article  CAS  PubMed  Google Scholar 

  • Fisher R, Menzies D, Herne D, Chiba M (1974) Parameters of dicofol spray deposit in relation to mortality of European red mite. J Econ Entomol 67:124–126

    Article  CAS  Google Scholar 

  • Fitzgerald GJ, Maas SJ, Detar WR (2004) Spider mite detection and canopy component mapping in cotton using hyperspectral imagery and spectral mixture analysis. Precision Agric 5:275–289

    Article  Google Scholar 

  • Gore J, Cook DR, Catchot AL, Musser FR, Stewart SD, Leonard BR, Lorenz G, Studebaker G, Akin AS, Tindall KV, Jackson RE (2013) Impact of two-spottedspider mite (Acari: Tetranychidae) infestation timing on cotton yields. J Cotton Sci 17:34–39

    Google Scholar 

  • Grbic M, Van Leeuwen T, Clark RM, Rombauts S, Rouze P, Grbic V, Osborne EJ, Dermauw W, Thi Ngoc PC, Ortego F, Hernandez-Crespo P, Diaz I, Martinez M, Navajas M, Sucena E, Magalhaes S, Nagy L, Pace RM, Djuranovic S, Smagghe G, Iga M, Christiaens O, Veenstra JA, Ewer J, Villalobos RM, Hutter JL, Hudson SD, Velez M, Yi SV, Zeng J, Pires-daSilva A, Roch F, Cazaux M, Navarro M, Zhurov V, Acevedo G, Bjelica A, Fawcett JA, Bonnet E, Martens C, Baele G, Wissler L, Sanchez-Rodriguez A, Tirry L, Blais C, Demeestere K, Henz SR, Gregory TR, Mathieu J, Verdon L, Farinelli L, Schmutz J, Lindquist E, Feyereisen R, Van de Peer Y (2011) The genome of Tetranychus urticae reveals herbivorous pest adaptations. Nature 479, 487–492. http://www.nature.com/nature/journal/v479/n7374/abs/nature10640.html#supplementary-information

  • Hall FR, Reichard DL (1978) Effects of spray droplet size, dosage, and solution per ha rates on mortality of twospotted spider mite. J Econ Entomol 71:279–282

    Article  Google Scholar 

  • Hall F, Thacker J (1993) Laboratory studies on effects of three permethrin formulations on mortality, fecundity, feeding, and repellency of the twospotted spider mite (Acari: Tetranychidae). J Econ Entomol 86:537–543

    Article  CAS  Google Scholar 

  • Helle W, Sabelis MW (1985) Spider mites: their biology, natural enemies and control, vol 1. Elsevier, Amsterdam

    Google Scholar 

  • Hewitt AJ, Johnson DR, Fish JD, Hermansky CG, Valcore DL (2002) Development of the spray drift task force database for aerial applications. Environ Toxicol Chem 21:648–658

    Article  CAS  PubMed  Google Scholar 

  • Hoffmann WC, Fritz BK, Thornburg JW, Bagley W, Birchfield NB, Ellenberger J (2010) Spray drift reduction evaluations of spray nozzles using a standardized testing protocol. DTIC Document

  • Hoffmann WC, Fritz BK, Bagley WE, Gednalske J, Elsik CE, Kruger GR (eds) (2012) Determination of selection criteria for spray drift reduction from atomization data. ASTM International, Tampa, FL

  • Holden EL (2002) Spatial ecology and remote sensing in the precision management of Tetranychus urticae (Acari: Teranychidae) in peanut MS. Polytechnic Institute and State University, Virginia

    Google Scholar 

  • Horowitz A, Mendelson Z, Ishaaya I (1997) Effect of abamectin mixed with mineral oil on the sweetpotato whitefly (Homoptera: Aleyrodidae). J Econ Entomol 90:349–353

    Article  CAS  Google Scholar 

  • Hoy MA (2011) Agricultural acarology: introduction to integrated mite management, vol 7. CRC Press, Boca Raton

    Book  Google Scholar 

  • Jansson R, Dybas R (1998) Avermectins: Biochemical mode of action, biological activity and agricultural importance Insecticides with Novel Modes of Action. Springer, Heidelberg, pp 152–170

    Book  Google Scholar 

  • Jeppson LR, Keifer HH, Baker EW (1975) Mites injurious to economic plants. Univ of California Press, California

    Google Scholar 

  • Kirk IW, House VS, Bouse LF (1993) In: Devisetty BN, Chasin DG, Berger PD (eds) Ovicide formulation and aerial application parameters influence control of tobacco budworm on cotton vol 12. ASTM Special Technical Publication, Philadelphia, pp 319–339

    Google Scholar 

  • Lan Y, Zhang H, Hoffmann W, Juan D, Lopez J (2013) Spectral response of spider mite infested cotton: Mite density and miticide rate study. Int J Agric Biol Eng 6:48–52

    Google Scholar 

  • Latheef MA, Hoffmann WC (2014) Toxicity of selected acaricides in a glass-vial bioassay to twospotted spider mite (Acari: Tetranychidae). Southwest Entomol 39:29–36

    Article  Google Scholar 

  • Lindquist EE, Bruin J, Sabelis M (1996) Eriophyoid mites: their biology, natural enemies and control. Elsevier, Amsterdam

    Google Scholar 

  • Luedeling E, Hale A, Zhang M, Bentley WJ, Dharmasri LC (2009) Remote sensing of spider mite damage in California peach orchards. Int J Appl Earth Obs Geoinf 11:244–255

    Article  Google Scholar 

  • Lümmen P, Khajehali J, Luther K, Van Leeuwen T (2014) The cyclic keto-enol insecticide spirotetramat inhibits insect and spider mite acetyl-CoA carboxylases by interfering with the carboxyltransferase partial reaction. Insect Biochem Mol Biol 55:1–8

    Article  PubMed  Google Scholar 

  • MacConnell JG, Demchak RJ, Preiser FA, Dybas RA (1989) Relative stability, toxicity, and penetrability of abamectin and its 8, 9-oxide. J Agric Food Chem 37:1498–1501

    Article  CAS  Google Scholar 

  • Marcic D, Ogurlic I, Mutavdzic S, Peric P (2010) The effects of spiromesifen on life history traits and population growth of two-spotted spider mite (Acari: Tetranychidae). Exp Appl Acarol 50:255–267

    Article  PubMed  Google Scholar 

  • Marcic D, Perić P, Stamenković S, Milenković S (2011) Field evaluation of spiromesifen, a new tetronic acid derivative, against European red mite (Acari: Tetranychidae) on apple. In: II Balkan Symposium on Fruit Growing 981, p 501–505

  • McCoy C, Albrigo L (1975) Feeding injury to the orange caused by the citrus rust mite, Phyllocoptruta oleivora (Prostigmata: Eriophyoidea). Ann Entomol Soc Am 68:289–297

    Article  CAS  Google Scholar 

  • Munthali DC (1984) Biological efficiency of small dicofol droplets against Tetranychus urticae (Koch) eggs, larvae and protonymphs. Crop Protect 3: 327–334 doi:http://dx.doi.org/10.1016/0261-2194(84)90038-3

  • Munthali DC, Wyatt IJ (1986) Factors affecting the biological efficiency of small pesticide droplets against Tetranychus urticae eggs. Pestic Sci 17:155–164

    Article  CAS  Google Scholar 

  • Nauen R, Bretschneider T, Elbert A, Fischer R, Tieman R (2003) Spirodiclofen and spiromesifen. Pestic Outlook 14:243–246

    Article  CAS  Google Scholar 

  • Piñuelas J, Filella I, Loret P, Munoz F, Vilajeliu M (1995) Reflectance assessment of mite effects on apple trees. Int J Remote Sens 16:2727–2733

    Article  Google Scholar 

  • Pitterna T (2012) Avermectin Insecticides and Acaricides. In: Bioactive Heterocyclic Compound Classes: Agrochemicals, p 195–207

  • Reisig D, Godfrey L (2006) Remote sensing for detection of cotton aphid-(Homoptera: Aphididae) and spider mite-(Acari: Tetranychidae) infested cotton in the San Joaquin Valley. Environ Entomol 35:1635–1646

    Google Scholar 

  • Royalty R, Perring T (1996) 1 Nature of damage and its assessment. World Crop Pests 6:493–512

    Article  Google Scholar 

  • Rudd JA (1997) Effects of pesticides on spin down and webbing production by the two-spotted spider mite, Tetranychus urticae Koch (Acari: Tetranychidae). Exp Appl Acarol 21:615–628

    Article  CAS  Google Scholar 

  • Saito Y (1983) The concept of «life types» in Tetranychinae. An attempt to classify the spinning behaviour of Tetranychinae. Acarologia 24:377–391

    Google Scholar 

  • Salyani M, McCoy CW (1989) Spray droplet size effect on mortality of citrus rust mite. ASTM special technical publication, Philadelphia, pp 262–273

    Google Scholar 

  • SAS (2012) SAS Version 9.4. Cary, N.C.: SAS Institute

  • SAS (2013) JMP®, Version 11. SAS Institute, Cary

    Google Scholar 

  • Sato ME, da Silva MZ, Raga A, Cangani KG, Veronez B, Nicastro RL (2011) Spiromesifen toxicity to the spider mite Tetranychus urticae and selectivity to the predator Neoseiulus californicus. Phytoparasitica 39:437–445

    Article  CAS  Google Scholar 

  • Schuster D, Taylor J (1987) Residual activity of abamectin against Liriomyza trifolii (Diptera: Agromyzidae). Fla. Entomol. 351–354

  • Teske M, Thistle H, Mickle R (2000) Modeling finer droplet aerial spray drift and deposition. Appl Eng Agric 16:351–357

    Article  Google Scholar 

  • Van Leeuwen T, Vontas J, Tsagkarakou A, Dermauw W, Tirry L (2010a) Acaricide resistance mechanisms in the two-spotted spider mite, Tetranychus urticae and other important Acari: a review. Insect Biochem Mol Biol 40:563–572

    Article  PubMed  Google Scholar 

  • Van Leeuwen T, Witters J, Nauen R, Duso C, Tirry L (2010b) The control of eriophyoid mites: state of the art and future challenges Eriophyoid Mites: Progress and Prognoses. Springer, Netherland, pp 205–224

    Google Scholar 

  • Walsh DB, Zalom FG, Shaw DV, Welch NC (1996) Effect of strawberry plant physiological status on the translaminar activity of avermectin B1 and its efficacy against the twospotted spider mite (Acari: Tetranychidae). J Econ Entomol 89:1250–1253

    Article  CAS  Google Scholar 

  • Whittney RW, Gardisser DR (2003) DropletScan Operators Manual. Stillwater, OK, WRK of Oklahoma and WRK of Arkansas

  • Williams MR Cotton insect losses 2012. In: Beltwide Cotton Conference, San Antonio, TX, 2012. vol 2. National Cotton Council, p 546-586

  • Wilson L, Morton R (1993) Seasonal abundance and distribution of Tetranychus urticae (Acari: Tetranychidae), the two spotted spider mite, on cotton in Australia and implications for management. Bull Entomol Res 83:291–303

    Article  Google Scholar 

  • Wilson L, Gonzalez D, Leigh T, Maggi V, Foristiere C, Goodell P (1983) Within-plant distribution of spider mites (Acari: Tetranychidae) on cotton: a developing implementable monitoring program. Environ Entomol 12:128–134

    Article  Google Scholar 

  • Wolf R (2000) Equipment to reduce spray drift. Kansas State University Agricultural Experiment Station and Cooperative Extension Service Publication# MF-2445, 1-4

  • Wright D, Loy A, Green ASJ, Dybas R (1985) Translaminar activity of abamectin (MK-936) against mites and aphids. Mededelingen van de Faculteit Landbouwwetenschappen Rijksuniversiteit 50:595–601

    CAS  Google Scholar 

  • Zabkiewicz J (2000) Adjuvants and herbicidal efficacy-present status and future prospects. Weed Res Oxf 40:139–149

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We appreciate the assistance of Chris Parker who conducted the GreenSeeker evaluations and Curtis Hubbard who maintained the plants in the greenhouse. Mention of trade names or commercial products in this article is solely for the purpose of providing specific information and does not imply recommendation or endorsement by the U. S. Department of Agriculture.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Daniel E. Martin.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Martin, D.E., Latheef, M.A. & López, J.D. Evaluation of selected acaricides against twospotted spider mite (Acari: Tetranychidae) on greenhouse cotton using multispectral data. Exp Appl Acarol 66, 227–245 (2015). https://doi.org/10.1007/s10493-015-9903-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10493-015-9903-6

Keywords

Navigation