Skip to main content
Log in

On a Caginalp phase-field system with a logarithmic nonlinearity

  • Published:
Applications of Mathematics Aims and scope Submit manuscript

Abstract

We consider a phase field system based on the Maxwell Cattaneo heat conduction law, with a logarithmic nonlinearity, associated with Dirichlet boundary conditions. In particular, we prove, in one and two space dimensions, the existence of a solution which is strictly separated from the singularities of the nonlinear term and that the problem possesses a finite-dimensional global attractor in terms of exponential attractors.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. Babin, B. Nicolaenko: Exponential attractors for reaction-diffusion systems in an unbounded domain. J. Dyn. Differ. Equations 7 (1995), 567–590.

    Article  MATH  MathSciNet  Google Scholar 

  2. D. Brochet, D. Hilhorst: Universal attractor and inertial sets for the phase field model. Appl. Math. Lett. 4 (1991), 59–62.

    Article  MATH  MathSciNet  Google Scholar 

  3. D. Brochet, D. Hilhorst, X. Chen: Finite dimensional exponential attractor for the phase field model. Appl. Anal. 49 (1993), 197–212.

    Article  MATH  MathSciNet  Google Scholar 

  4. D. Brochet, D. Hilhorst, A. Novick-Cohen: Finite-dimensional exponential attractor for a model for order-disorder and phase separation. Appl. Math. Lett. 7 (1994), 83–87.

    Article  MATH  MathSciNet  Google Scholar 

  5. G. Caginalp: An analysis of a phase field model of a free boundary. Arch. Ration. Mech. Anal. 92 (1986), 205–245.

    Article  MATH  MathSciNet  Google Scholar 

  6. G. Caginalp: The role of microscopic anisotropy in the macroscopic behavior of a phase boundary. Ann. Phys. 172 (1986), 136–155.

    Article  MATH  MathSciNet  Google Scholar 

  7. L. Cherfils, A. Miranville: Some results on the asymptotic behavior of the Caginalp system with singular potentials. Adv. Math. Sci. Appl. 17 (2007), 107–129.

    MATH  MathSciNet  Google Scholar 

  8. M. Conti, S. Gatti, A. Miranville: Asymptotic behavior of the Caginalp phase-field system with coupled dynamic boundary conditions. Discrete Contin. Dyn. Syst., Ser. S 5 (2012), 485–505.

    Article  MATH  MathSciNet  Google Scholar 

  9. P. Fabrie, C. Galusinski: Exponential attractors for partially dissipative reaction system. Asymptotic Anal. 12 (1996), 329–354.

    MATH  MathSciNet  Google Scholar 

  10. H. Gajewski, K. Zacharias: Global behaviour of a reaction-diffusion system modelling chemotaxis. Math. Nachr. 195 (1998), 77–114.

    Article  MATH  MathSciNet  Google Scholar 

  11. M. Grasselli, A. Miranville, V. Pata, S. Zelik: Well-posedness and long time behavior of a parabolic-hyperbolic phase-field system with singular potentials. Math. Nachr. 280 (2007), 1475–1509.

    Article  MATH  MathSciNet  Google Scholar 

  12. A. Kufner, O. John, S. Fučík: Function Spaces. Monographs and Textsbooks on Mechanics of Solids and Fluids. Mechanics: Analysis. Noordhoff International Publishing, Leyden, Academia, Prague, 1977.

    Google Scholar 

  13. L. D. Landau, E. M. Lifschitz: Course of Theoretical Physics. Vol. 1. Mechanics. Akademie, Berlin, 1981. (In German.)

    Google Scholar 

  14. A. Miranville: Exponential attractors for a class of evolution equations by a decomposition method. C. R. Acad. Sci., Paris, Sér. I, Math. 328 (1999), 145–150. (In English. Abridged French version.)

    Article  MATH  MathSciNet  Google Scholar 

  15. A. Miranville: On a phase-field model with a logarithmic nonlinearity. Appl. Math., Praha 57 (2012), 215–229.

    Article  MATH  MathSciNet  Google Scholar 

  16. A. Miranville: Some mathematical models in phase transition. Discrete Contin. Dyn. Syst., Ser. S 7 (2014), 271–306.

    Article  MATH  MathSciNet  Google Scholar 

  17. A. Miranville, R. Quintanilla: A generalization of the Caginalp phase-field system based on the Cattaneo law. Nonlinear Anal., Theory Methods Appl., Ser. A, Theory Methods 71 (2009), 2278–2290.

    Article  MATH  MathSciNet  Google Scholar 

  18. A. Miranville, R. Quintanilla: Some generalizations of the Caginalp phase-field system. Appl. Anal. 88 (2009), 877–894.

    Article  MATH  MathSciNet  Google Scholar 

  19. A. Miranville, S. Zelik: Robust exponential attractors for Cahn-Hilliard type equations with singular potentials. Math. Methods Appl. Sci. 27 (2004), 545–582.

    Article  MATH  MathSciNet  Google Scholar 

  20. A. Miranville, S. Zelik: Attractors for dissipative partial differential equations in bounded and unbounded domains. Handbook of Differential Equations: Evolutionary Equations. Vol. IV (C. M. Dafermos et al., eds.). Elsevier/North-Holland, Amsterdam, 2008, pp. 103–200.

    Google Scholar 

  21. R. Temam: Infinite-Dimensional Dynamical Systems in Mechanics and Physics. Applied Mathematical Sciences 68, Springer, New York, 1997.

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Charbel Wehbe.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wehbe, C. On a Caginalp phase-field system with a logarithmic nonlinearity. Appl Math 60, 355–382 (2015). https://doi.org/10.1007/s10492-015-0101-y

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10492-015-0101-y

Keywords

MSC 2010

Navigation