Skip to main content
Log in

Local feature matching from detector-based to detector-free: a survey

  • Published:
Applied Intelligence Aims and scope Submit manuscript

Abstract

Local feature matching has been a critical task in computer vision applications. In the early days of computer vision, local feature matching relied heavily on detector-based methods, where keypoint detectors were used to extract and describe the salient features of an image. However, with the advent of deep learning, detector-free methods that do not rely on keypoint detection have become increasingly popular. These methods directly learn feature descriptors from the image data, leading to improved performance and faster computation times. In this review, we explore the evolution of local feature matching from detector-based to detector-free methods, discussing the advantages and disadvantages of each approach and highlighting the recent advancements in the field. We also discuss the challenges and opportunities for future research in this area.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Data Availability and access

The datasets analyzed during the current study are available from the following public domain resources: http://www.scan-net.org/; http://www.cs.cornell.edu/projects/megadepth/; https://github.com/hpatches; https://data.ciirc.cvut.cz/public/projects/2020VisualLocalization/Aachen-Day-Night/; http://www.ok.sc.e.titech.ac.jp/INLOC/.

References

  1. Wang Z (2022) Automatic and robust hand gesture recognition by SDD features based model matching. Appl Intell 52(10):11288–11299. https://doi.org/10.1007/s10489-021-02933-y

    Article  Google Scholar 

  2. Lai B, Liu W, Wang C, Fan X, Lin Y, Bian X, Wu S, Cheng M, Li J (2022) 2d3d-mvpnet: learning cross-domain feature descriptors for 2d–3d matching based on multi-view projections of point clouds. Appl Intell 52(12):14178–14193. https://doi.org/10.1007/s10489-022-03372-z

    Article  Google Scholar 

  3. Yang L, Huang Q, Li X, Yuan Y (2022) Dynamic-scale grid structure with weighted-scoring strategy for fast feature matching. Appl Intell 52(9):10576–10590. https://doi.org/10.1007/s10489-021-02990-3

    Article  Google Scholar 

  4. Ma J, Fan A, Jiang X, Xiao G (2022) Feature matching via motion-consistency driven probabilistic graphical model. Int J Comput Vis 130(9):2249–2264. https://doi.org/10.1007/s11263-022-01644-2

    Article  Google Scholar 

  5. Fan X, Xing L, Chen J, Chen S, Bai H, Xing L, Zhou C, Yang Y (2022) Vlsg-sanet: a feature matching algorithm for remote sensing image registration. Knowl Based Syst 255. https://doi.org/10.1016/j.knosys.2022.109609

  6. Baruch EB, Keller Y (2022) Joint detection and matching of feature points in multimodal images. IEEE Trans Pattern Anal Mach Intell 44(10):6585–6593. https://doi.org/10.1109/TPAMI.2021.3092289

    Article  PubMed  Google Scholar 

  7. Jiang B, Sun P, Luo B (2022) Glmnet: graph learning-matching convolutional networks for feature matching. Pattern Recognit 121. https://doi.org/10.1016/j.patcog.2021.108167

  8. Chen Q, Yao L, Xu L, Yang Y, Xu T, Yang Y, Liu Y (2022) Horticultural image feature matching algorithm based on improved ORB and LK optical flow. Remote Sens 14(18):4465. https://doi.org/10.3390/rs14184465

    Article  ADS  Google Scholar 

  9. Gong D, Huang X, Zhang J, Yao Y, Han Y (2022) Efficient and robust feature matching for high-resolution satellite stereos. Remote Sens 14(21):5617. https://doi.org/10.3390/rs14215617

    Article  ADS  Google Scholar 

  10. Gong X, Yao F, Ma J, Jiang J, Lu T, Zhang Y, Zhou H (2022) Feature matching for remote-sensing image registration via neighborhood topological and affine consistency. Remote Sens 14(11):2606. https://doi.org/10.3390/rs14112606

    Article  ADS  Google Scholar 

  11. Gao Y, Zhao L (2022) Coarse TRVO: a robust visual odometry with detector-free local feature. J Adv Comput Intell Intell Informatics 26(5), 731–739. https://doi.org/10.20965/jaciii.2022.p0731

  12. Kim D, Lee J, Cho M, Kwak S (2022) Detector-free weakly supervised group activity recognition. In: IEEE/CVF Conference on computer vision and pattern recognition, CVPR 2022, New Orleans, LA, USA, pp 20051–20061. https://doi.org/10.1109/CVPR52688.2022.01945. Accessed 18–24 June 2022

  13. Mok TCW, Chung ACS (2022) Affine medical image registration with coarse-to-fine vision transformer. In: IEEE/CVF Conference on computer vision and pattern recognition, CVPR 2022, New Orleans, LA, USA, pp 20803–20812. https://doi.org/10.1109/CVPR52688.2022.02017. Accessed 18–24 June 2022

  14. Fan Y, Wang F, Wang H (2022) A transformer-based coarse-to-fine wide-swath SAR image registration method under weak texture conditions. Remote Sens 14(5):1175. https://doi.org/10.3390/rs14051175

    Article  ADS  Google Scholar 

  15. Chen J, Frey EC, He Y, Segars WP, Li Y, Du Y (2022) Transmorph: transformer for unsupervised medical image registration. Medical Image Anal 82:102615. https://doi.org/10.1016/j.media.2022.102615

    Article  Google Scholar 

  16. Ma M, Xu Y, Song L, Liu G (2022) Symmetric transformer-based network for unsupervised image registration. Knowl Based Syst 257:109959. https://doi.org/10.1016/j.knosys.2022.109959

    Article  Google Scholar 

  17. Hoque MZ, Keskinarkaus A, Nyberg P, Mattila T, Seppänen T (2022) Whole slide image registration via multi-stained feature matching. Comput Biol Medicine 144:105301. https://doi.org/10.1016/j.compbiomed.2022.105301

    Article  Google Scholar 

  18. Zhu S, Ma W, Yao J (2022) Global and local geometric constrained feature matching for high resolution remote sensing images. Comput Electr Eng 103:108337. https://doi.org/10.1016/j.compeleceng.2022.108337

    Article  Google Scholar 

  19. Xue B, Yang Z, Liao L, Zhang C, Xu H, Zhang Q (2022) High precision visual localization method of UAV based on feature matching. Frontiers Comput Neurosci 16. https://doi.org/10.3389/fncom.2022.1037623

  20. Samak ZA, Clatworthy P, Mirmehdi M (2022) Fema: feature matching auto-encoder for predicting ischaemic stroke evolution and treatment outcome. Comput Medical Imaging Graph 99:102089. https://doi.org/10.1016/j.compmedimag.2022.102089

    Article  Google Scholar 

  21. Yang Z, Pan J, Li R, Qin H (2022) Scene-graph-driven semantic feature matching for monocular digestive endoscopy. Comput Biol Medicine 146:105616. https://doi.org/10.1016/j.compbiomed.2022.105616

    Article  Google Scholar 

  22. Damaneh MM, Mohanna F, Jafari P (2023) Static hand gesture recognition in sign language based on convolutional neural network with feature extraction method using ORB descriptor and gabor filter. Expert Syst Appl 211:118559. https://doi.org/10.1016/j.eswa.2022.118559

    Article  Google Scholar 

  23. Sanyal B, Mohapatra RK, Dash R (2022) Traffic sign recognition on indian database using wavelet descriptors and convolutional neural network ensemble. Concurr Comput Pract Exp 34(10). https://doi.org/10.1002/cpe.6827

  24. Yang M, Huang H, Zhang Y, Yan X (2022) Pattern recognition and segmentation of administrative boundaries using a one-dimensional convolutional neural network and grid shape context descriptor. ISPRS Int J Geo Inf 11(9):461. https://doi.org/10.3390/ijgi11090461

    Article  Google Scholar 

  25. Tsourounis D, Kastaniotis D, Theoharatos C, Kazantzidis A, Economou G (2022) SIFT-CNN: when convolutional neural networks meet dense SIFT descriptors for image and sequence classification. J Imaging 8(10):256. https://doi.org/10.3390/jimaging8100256

    Article  PubMed  PubMed Central  Google Scholar 

  26. Amini M, Pedram MM, Moradi A, Ouchani M (2021) Diagnosis of alzheimer’s disease by time-dependent power spectrum descriptors and convolutional neural network using EEG signal. Comput Math Methods Med 2021:5511922–1551192217. https://doi.org/10.1155/2021/5511922

    Article  PubMed  PubMed Central  Google Scholar 

  27. Dong H, Ma W, Wu Y, Gong M, Jiao L (2019) Local descriptor learning for change detection in synthetic aperture radar images via convolutional neural networks. IEEE Access. 7:15389–15403. https://doi.org/10.1109/ACCESS.2018.2889326

    Article  Google Scholar 

  28. Santos Ferreira MV, Carvalho Filho AO, Sousa AD, Silva AC, Gattass M (2018) Convolutional neural network and texture descriptor-based automatic detection and diagnosis of glaucoma. Expert Syst Appl 110:250–263. https://doi.org/10.1016/j.eswa.2018.06.010

    Article  Google Scholar 

  29. Shan Y, Li S (2018) Descriptor matching for a discrete spherical image with a convolutional neural network. IEEE Access 6:20748–20755. https://doi.org/10.1109/ACCESS.2018.2825477

    Article  Google Scholar 

  30. Zhu K, Wang R, Zhao Q, Cheng J, Tao D (2020) A cuboid CNN model with an attention mechanism for skeleton-based action recognition. IEEE Trans Multim 22(11):2977–2989. https://doi.org/10.1109/TMM.2019.2962304

    Article  Google Scholar 

  31. Vaswani A, Shazeer N, Parmar N, Uszkoreit J, Jones L, Gomez AN, Kaiser L, Polosukhin I (2017) Attention is all you need. In: Guyon I, Luxburg U, Bengio S, Wallach HM, Fergus R, Vishwanathan SVN, Garnett R (eds.) Advances in Neural Information Processing Systems 30: Annual Conference on Neural Information Processing Systems 2017, December 4-9, 2017, Long Beach, CA, USA, pp. 5998–6008. https://proceedings.neurips.cc/paper/2017/hash/3f5ee243547dee91fbd053c1c4a845aa-Abstract.htmlhash/3f5ee243547dee91fbd053c1c4a845aa-Abstract.html

  32. Lu X, Du S (2022) NCTR: neighborhood consensus transformer for feature matching. In: 2022 IEEE International conference on image processing, ICIP 2022, Bordeaux, France, pp 2726–2730. https://doi.org/10.1109/ICIP46576.2022.9897245. Accessed 16–19 Oct 2022

  33. Chen J, Ding J, Yu Y, Gong W (2023) Thfuse: an infrared and visible image fusion network using transformer and hybrid feature extractor. Neurocomputing 527:71–82. https://doi.org/10.1016/j.neucom.2023.01.033

    Article  Google Scholar 

  34. Figueroa A (2023) Refining fine-tuned transformers with hand-crafted features for gender screening on question-answering communities. Inf Fusion 92:256–267. https://doi.org/10.1016/j.inffus.2022.12.003

    Article  Google Scholar 

  35. Jiang P, Deng F, Wang X, Shuai P, Luo W, Tang Y (2023) Seismic first break picking through swin transformer feature extraction. IEEE Geosci Remote Sens Lett 20:1–5. https://doi.org/10.1109/LGRS.2023.3248233

    Article  CAS  Google Scholar 

  36. Qiu J, Yao R, Zhou Y, Wang P, Zhang Y, Zhu H (2023) Visible and infrared object tracking via convolution-transformer network with joint multimodal feature learning. IEEE Geosci Remote Sens Lett 20:1–5. https://doi.org/10.1109/LGRS.2023.3259583

    Article  Google Scholar 

  37. Li X, Ma S, Shan L, Li X (2023) Multi-window transformer parallel fusion feature pyramid network for pedestrian orientation detection. Multim. Syst. 29(2):587–603. https://doi.org/10.1007/s00530-022-00993-9

    Article  Google Scholar 

  38. Zhou W, Dou P, Su T, Hu H, Zheng Z (2023) Feature learning network with transformer for multi-label image classification. Pattern Recognit 136:109203. https://doi.org/10.1016/j.patcog.2022.109203

    Article  Google Scholar 

  39. Wang G, Chen H, Chen L, Zhuang Y, Zhang S, Zhang T, Dong H, Gao P (2023) P2fevit: plug-and-play CNN feature embedded hybrid vision transformer for remote sensing image classification. Remote. Sens. 15(7):1773. https://doi.org/10.3390/rs15071773

    Article  ADS  Google Scholar 

  40. Zhuang S, Wang P, Wang G, Wang D, Chen J, Gao F (2022) Improving remote sensing image captioning by combining grid features and transformer. IEEE Geosci Remote Sens Lett 19:1–5. https://doi.org/10.1109/LGRS.2021.3135711

    Article  Google Scholar 

  41. Wu H, Chen S, Chen G, Wang W, Lei B, Wen Z (2022) Fat-net: feature adaptive transformers for automated skin lesion segmentation. Medical Image Anal 76:102327. https://doi.org/10.1016/j.media.2021.102327

    Article  Google Scholar 

  42. Liu M, Meng F, Wu Q, Xu L, Liao Q (2021) Behaviour detection in crowded classroom scenes via enhancing features robust to scale and perspective variations. IET Image Process. 15(14):3466–3475. https://doi.org/10.1049/ipr2.12318

    Article  Google Scholar 

  43. Schrum J, Capps B, Steckel K, Volz V, Risi S (2023) Hybrid encoding for generating large scale game level patterns with local variations. IEEE Trans. Games. 15(1):46–55. https://doi.org/10.1109/TG.2022.3170730

    Article  Google Scholar 

  44. Hoang TM, Nam GP, Cho J, Kim I (2020) Deface: deep efficient face network for small scale variations. IEEE Access. 8:142423–142433. https://doi.org/10.1109/ACCESS.2020.3012660

    Article  Google Scholar 

  45. Wei C, Ni W, Qin Y, Wu J, Zhang H, Liu Q, Cheng K, Bian H (2023) Ridop: a rotation-invariant detector with simple oriented proposals in remote sensing images. Remote. Sens. 15(3):594. https://doi.org/10.3390/rs15030594

    Article  ADS  Google Scholar 

  46. Li C, Li X, Wang J, Chen X, Zhang Y (2023) Exploring oblique rotation factor to restructure deep hyperspectral image classification. IEEE Geosci Remote Sens Lett 20:1–5. https://doi.org/10.1109/LGRS.2023.3263296

    Article  Google Scholar 

  47. Mazumder P, Singh P, Namboodiri VP (2022) Few-shot image classification with composite rotation based self-supervised auxiliary task. Neurocomputing 489:179–195. https://doi.org/10.1016/j.neucom.2022.02.044

    Article  Google Scholar 

  48. Zhao W, Na J, Li M, Ding H (2022) Rotation-aware building instance segmentation from high-resolution remote sensing images. IEEE Geosci Remote Sens Lett 19:1–5. https://doi.org/10.1109/LGRS.2022.3199395

    Article  Google Scholar 

  49. Kang J, Fernández-Beltran R, Wang Z, Sun X, Ni J, Plaza A (2022) Rotation-invariant deep embedding for remote sensing images. IEEE Trans Geosci Remote Sens 60:1–13. https://doi.org/10.1109/TGRS.2021.3088398

    Article  Google Scholar 

  50. Zheng X, Sun H, Lu X, Xie W (2022) Rotation-invariant attention network for hyperspectral image classification. IEEE Trans Image Process 31:4251–4265. https://doi.org/10.1109/TIP.2022.3177322

    Article  ADS  PubMed  Google Scholar 

  51. Han Y, Song T, Feng J, Xie Y (2021) Grayscale-inversion and rotation invariant image description with sorted LBP features. Signal Process. Image Commun 99:116491. https://doi.org/10.1016/j.image.2021.116491

    Article  Google Scholar 

  52. Zhang W, Jia Z, Yang J, Kasabov NK (2023) A dual channel decomposition and remapping fusion model for low illumination images with a wide field of view. Signal Process Image Commun 113:116925. https://doi.org/10.1016/j.image.2023.116925

    Article  Google Scholar 

  53. Zhang Y, Yu H, He Y, Wang X, Yang W (2023) Illumination-guided RGBT object detection with inter- and intra-modality fusion. IEEE Trans Instrum Meas 72:1–13. https://doi.org/10.1109/TIM.2023.3251414

    Article  Google Scholar 

  54. Zhuang L, Ng MK, Liu Y (2023) Cross-track illumination correction for hyperspectral pushbroom sensor images using low-rank and sparse representations. IEEE Trans Geosci Remote Sens 61:1–17. https://doi.org/10.1109/TGRS.2023.3236818

    Article  Google Scholar 

  55. Gawande U, Hajari K, Golhar Y (2022) SIRA: scale illumination rotation affine invariant mask R-CNN for pedestrian detection. Appl Intell 52(9):10398–10416. https://doi.org/10.1007/s10489-021-03073-z

    Article  Google Scholar 

  56. Qian S, Shi Y, Wu H, Liu J, Zhang W (2022) An adaptive enhancement algorithm based on visual saliency for low illumination images. Appl Intell 52(2):1770–1792. https://doi.org/10.1007/s10489-021-02466-4

    Article  Google Scholar 

  57. Guo H, Mo Z, Shi B, Lu F, Yeung S, Tan P, Matsushita Y (2022) Patch-based uncalibrated photometric stereo under natural illumination. IEEE Trans Pattern Anal Mach Intell 44(11):7809–7823. https://doi.org/10.1109/TPAMI.2021.3115229

    Article  PubMed  Google Scholar 

  58. Li N, Zhao X (2023) A multi-modal dataset for gait recognition under occlusion. Appl Intell 53(2):1517–1534. https://doi.org/10.1007/s10489-022-03474-8

    Article  Google Scholar 

  59. López A, Ogáyar CJ, Jurado JM, Feito FR (2023) Efficient generation of occlusion-aware multispectral and thermographic point clouds. Comput Electron Agric 207:107712. https://doi.org/10.1016/j.compag.2023.107712

    Article  Google Scholar 

  60. Koporec G, Pers J (2023) Human-centered deep compositional model for handling occlusions. Pattern Recognit. 138:109397. https://doi.org/10.1016/j.patcog.2023.109397

    Article  Google Scholar 

  61. Liu Y, Aleksandrov M, Hu Z, Meng Y, Zhang L, Zlatanova S, Ai H, Tao P (2023) Accurate light field depth estimation under occlusion. Pattern Recognit. 138:109415. https://doi.org/10.1016/j.patcog.2023.109415

    Article  Google Scholar 

  62. Xu C, Makihara Y, Li X, Yagi Y (2023) Occlusion-aware human mesh model-based gait recognition. IEEE Trans Inf Forensics Secur 18:1309–1321. https://doi.org/10.1109/TIFS.2023.3236181

    Article  Google Scholar 

  63. Chu H, Mo L, Wang R, Hu T, Ma H (2022) Visibility of points: mining occlusion cues for monocular 3d object detection. Neurocomputing 502:48–56. https://doi.org/10.1016/j.neucom.2022.06.099

    Article  Google Scholar 

  64. Mathias A, Dhanalakshmi S, Kumar R (2022) Occlusion aware underwater object tracking using hybrid adaptive deep SORT -yolov3 approach. Multim. Tools Appl. 81(30):44109–44121. https://doi.org/10.1007/s11042-022-13281-5

    Article  Google Scholar 

  65. Madjidi H, Laroussi T (2023) Approximate MLE based automatic bilateral censoring CFAR ship detection for complex scenes of log-normal sea clutter in SAR imagery. Digit Signal Process 136:103972. https://doi.org/10.1016/j.dsp.2023.103972

    Article  Google Scholar 

  66. Cuellar A, Mahalanobis A (2023) Detection of small moving targets in cluttered infrared imagery. IEEE Trans Aerosp Electron Syst 59(2):1506–1517. https://doi.org/10.1109/TAES.2022.3202881

    Article  Google Scholar 

  67. Cheng C, Zhang Y, Guo W, Yu B (2022) Research on construction method of typical clutter environment based on reverberation chamber. Signal Image Video Process. 16(8):2063–2071. https://doi.org/10.1007/s11760-022-02168-5

    Article  Google Scholar 

  68. Gupta V, Gupta M, Singla P (2021) Ship detection from highly cluttered images using convolutional neural network. Wirel Pers Commun 121(1):287–305. https://doi.org/10.1007/s11277-021-08635-5

    Article  Google Scholar 

  69. Zhu Q, Wang F, Cai C, Meng H, Qiao R (2022) Keypoint matching using salient regions and GMM in images with weak textures and repetitive patterns. Multim Tools Appl 81(16):23237–23257. https://doi.org/10.1007/s11042-022-12503-0

    Article  Google Scholar 

  70. Iyobe S, Shimizu M, Umedachi T (2022) Diverse behaviors of a single-motor-driven soft-bodied robot utilizing the resonant vibration of 2d repetitive slit patterns. IEEE Robotics Autom Lett 7(2):992–999. https://doi.org/10.1109/LRA.2021.3136305

    Article  Google Scholar 

  71. Lin T, Wang X (2020) Hierarchical clustering matching for features with repetitive patterns in visual odometry. J Intell Robotic Syst 100(3):1139–1155. https://doi.org/10.1007/s10846-020-01230-z

    Article  Google Scholar 

  72. Yong YL, Lee Y, Ngo DCL (2020) Adaptive detection of FOREX repetitive chart patterns. Pattern Anal Appl 23(3):1277–1292. https://doi.org/10.1007/s10044-019-00862-8

    Article  MathSciNet  Google Scholar 

  73. Davahli A, Shamsi M, Abaei G, Khosravi A (2023) Empirical analyses of genetic algorithm and grey wolf optimiser to improve their efficiency with a new multi-objective weighted fitness function for feature selection in machine learning classification: the roadmap. J Exp Theor Artif Intell 35(2):171–206. https://doi.org/10.1080/0952813x.2021.1960627

    Article  Google Scholar 

  74. Lee J, Sun YG, Sim I, Kim SH, Kim DI, Kim JY (2022) Non-technical loss detection using deep reinforcement learning for feature cost efficiency and imbalanced dataset. IEEE Access. 10:27084–27095. https://doi.org/10.1109/ACCESS.2022.3156948

    Article  Google Scholar 

  75. Assous HF (2022) Prediction of banks efficiency using feature selection method: comparison between selected machine learning models. CompLex 2022:3374489–1337448915. https://doi.org/10.1155/2022/3374489

    Article  Google Scholar 

  76. Li W, Zhang Y, Wang G, Huang Y, Li R (2023) Dfenet: a dual-branch feature enhanced network integrating transformers and convolutional feature learning for multimodal medical image fusion. Biomed. Signal Process Control 80(Part):104402. https://doi.org/10.1016/j.bspc.2022.104402

  77. Zhang G, Nie R, Cao J, Chen L, Zhu Y (2023) Fdgnet: a pair feature difference guided network for multimodal medical image fusion. Biomed Signal Process Control 81:104545. https://doi.org/10.1016/j.bspc.2022.104545

    Article  Google Scholar 

  78. Islam MM, Nooruddin S, Karray F, Muhammad G (2023) Multi-level feature fusion for multimodal human activity recognition in internet of healthcare things. Inf Fusion 94:17–31. https://doi.org/10.1016/j.inffus.2023.01.015

    Article  Google Scholar 

  79. Pan B, Hirota K, Jia Z, Zhao L, Jin X, Dai Y (2023) Multimodal emotion recognition based on feature selection and extreme learning machine in video clips. J Ambient Intell Humaniz Comput 14(3):1903–1917. https://doi.org/10.1007/s12652-021-03407-2

    Article  Google Scholar 

  80. Jana M, Das A (2023) Multimodal medical image fusion using two- stage decomposition technique to combine the significant features of spatial fuzzy plane and transformed frequency plane. IEEE Trans Instrum Meas 72:1–10. https://doi.org/10.1109/TIM.2023.3240222

    Article  Google Scholar 

  81. Tang C, Tong A, Zheng A, Peng H, Li W (2022) Using a selective ensemble support vector machine to fuse multimodal features for human action recognition. Comput Intell Neurosci 2022:1877464–1187746418. https://doi.org/10.1155/2022/1877464

    Article  PubMed  PubMed Central  Google Scholar 

  82. Xu Y, Zhao Y, Lu P (2022) Mixed noise reduction via sparse error constraint representation of high frequency image for wildlife image. Multim Tools Appl 81(30):44045–44058. https://doi.org/10.1007/s11042-022-13247-7

    Article  Google Scholar 

  83. Lee S, Kang MG (2021) Poisson-gaussian noise reduction for x-ray images based on local linear minimum mean square error shrinkage in nonsubsampled contourlet transform domain. IEEE Access 9:100637–100651. https://doi.org/10.1109/ACCESS.2021.3097078

    Article  Google Scholar 

  84. George ML, Lakshmi NVSSR, Nagarajan SM, Mahapatra RP, Muthukumaran V, Sivaram M (2022) Intelligent recognition system for viewpoint variations on gait and speech using cnn-capsnet. Int J Intell Comput Cybern 15(3):363–382. https://doi.org/10.1108/IJICC-08-2021-0178

    Article  Google Scholar 

  85. Liu W, Chang C, Zhang F (2021) Stealthy and robust glitch injection attack on deep learning accelerator for target with variational viewpoint. IEEE Trans Inf Forensics Secur 16:1928–1942. https://doi.org/10.1109/TIFS.2020.3046858

    Article  Google Scholar 

  86. Zitová B, Flusser J (2003) Image registration methods: a survey. Image Vis Comput 21(11):977–1000. https://doi.org/10.1016/S0262-8856(03)00137-9

    Article  Google Scholar 

  87. Tuytelaars T, Mikolajczyk K (2007) Local invariant feature detectors: a survey. Found Trends Comput Graph Vis 3(3):177–280. https://doi.org/10.1561/0600000017

    Article  Google Scholar 

  88. Strecha C, Hansen W, Gool LV, Fua P, Thoennessen U (2008) On benchmarking camera calibration and multi-view stereo for high resolution imagery. In: 2008 IEEE Computer society conference on computer vision and pattern recognition (CVPR 2008), Anchorage, Alaska, USA (2008). https://doi.org/10.1109/CVPR.2008.4587706. Accessed 24–26 June 2008

  89. Aanæs H, Dahl AL, Pedersen KS (2012) Interesting interest points - a comparative study of interest point performance on a unique data set. Int J Comput Vis 97(1):18–35. https://doi.org/10.1007/s11263-011-0473-8

    Article  Google Scholar 

  90. Heinly J, Dunn E, Frahm J (2012) Comparative evaluation of binary features. In: Fitzgibbon AW, Lazebnik S, Perona P, Sato Y, Schmid C (eds) computer vision - ECCV 2012 - 12th European conference on computer vision, Florence, Italy, Proceedings, Part II. Lecture Notes in Comput Sci vol 7573:759–773. https://doi.org/10.1007/978-3-642-33709-3_54. Accessed 7–13 Oct 2012

  91. Awrangjeb M, Lu G, Fraser CS (2012) Performance comparisons of contour-based corner detectors. IEEE Trans Image Process 21(9):4167–4179. https://doi.org/10.1109/TIP.2012.2200493

    Article  ADS  MathSciNet  PubMed  Google Scholar 

  92. Li Y, Wang S, Tian Q, Ding X (2015) A survey of recent advances in visual feature detection. Neurocomputing 149:736–751. https://doi.org/10.1016/j.neucom.2014.08.003

    Article  Google Scholar 

  93. Arandjelovic R, Zisserman A (2012) Three things everyone should know to improve object retrieval. In: 2012 IEEE Conference on computer vision and pattern recognition, Providence, RI, USA, June 16-21, 2012, pp 2911–2918. https://doi.org/10.1109/CVPR.2012.6248018

  94. Lenc K, Vedaldi A (2018) Large scale evaluation of local image feature detectors on homography datasets. In: British machine vision conference 2018, BMVC 2018, Newcastle, UK, p 122. http://bmvc2018.org/contents/papers/0462.pdf. Accessed 3–6 Sept 2018

  95. Huang X, Wang P, Cheng X, Zhou D, Geng Q, Yang R (2020) The apolloscape open dataset for autonomous driving and its application. IEEE Trans Pattern Anal Mach Intell 42(10):2702–2719. https://doi.org/10.1109/TPAMI.2019.2926463

    Article  PubMed  Google Scholar 

  96. Balntas V, Lenc K, Vedaldi A, Mikolajczyk K (2017) Hpatches: a benchmark and evaluation of handcrafted and learned local descriptors. In: 2017 IEEE Conference on computer vision and pattern recognition, CVPR 2017, Honolulu, HI, USA, pp 3852–3861. https://doi.org/10.1109/CVPR.2017.410. Accessed 21–26 July 2017

  97. Schönberger JL, Hardmeier H, Sattler T, Pollefeys M (2017) Comparative evaluation of hand-crafted and learned local features. In: 2017 IEEE Conference on computer vision and pattern recognition, CVPR 2017, Honolulu, HI, USA, pp 6959–6968. https://doi.org/10.1109/CVPR.2017.736. Accessed 21–26 July 2017

  98. Leng C, Zhang H, Li B, Cai G, Pei Z, He L (2019) Local feature descriptor for image matching: a survey. IEEE Access 7:6424–6434. https://doi.org/10.1109/ACCESS.2018.2888856

    Article  Google Scholar 

  99. Ferrante E, Paragios N (2017) Slice-to-volume medical image registration: a survey. Medical Image Anal 39:101–123. https://doi.org/10.1016/j.media.2017.04.010

    Article  Google Scholar 

  100. Haskins G, Kruger U, Yan P (2020) Deep learning in medical image registration: a survey. Mach Vis Appl 31(1–2):8. https://doi.org/10.1007/s00138-020-01060-x

    Article  Google Scholar 

  101. Venkatesan B, Ragupathy US, Natarajan I (2023) A review on multimodal medical image fusion towards future research. Multim Tools Appl 82(5):7361–7382. https://doi.org/10.1007/s11042-022-13691-5

    Article  Google Scholar 

  102. Jiang X, Ma J, Xiao G, Shao Z, Guo X (2021) A review of multimodal image matching: methods and applications. Inf Fusion 73:22–71. https://doi.org/10.1016/j.inffus.2021.02.012

    Article  Google Scholar 

  103. Fan B, Kong Q, Wang X, Wang Z, Xiang S, Pan C, Fua P (2019) A performance evaluation of local features for image-based 3d reconstruction. IEEE Trans Image Process 28(10):4774–4789. https://doi.org/10.1109/TIP.2019.2909640

    Article  ADS  MathSciNet  PubMed  Google Scholar 

  104. Guo Y, Bennamoun M, Sohel FA, Lu M, Wan J, Kwok NM (2016) A comprehensive performance evaluation of 3d local feature descriptors. Int J Comput Vis 116(1):66–89. https://doi.org/10.1007/s11263-015-0824-y

    Article  MathSciNet  Google Scholar 

  105. Zheng L, Yang Y, Tian Q (2018) SIFT meets CNN: a decade survey of instance retrieval. IEEE Trans Pattern Anal Mach Intell 40(5):1224–1244. https://doi.org/10.1109/TPAMI.2017.2709749

    Article  PubMed  Google Scholar 

  106. Piasco N, Sidibé D, Demonceaux C, Gouet-Brunet V (2018) A survey on visual-based localization: on the benefit of heterogeneous data. Pattern Recognit 74:90–109. https://doi.org/10.1016/j.patcog.2017.09.013

    Article  ADS  Google Scholar 

  107. Canny JF (1986) A computational approach to edge detection. IEEE Trans Pattern Anal Mach Intell 8(6):679–698. https://doi.org/10.1109/TPAMI.1986.4767851

    Article  CAS  PubMed  Google Scholar 

  108. Perona P, Malik J (1990) Scale-space and edge detection using anisotropic diffusion. IEEE Trans Pattern Anal Mach Intell 12(7):629–639. https://doi.org/10.1109/34.56205

    Article  Google Scholar 

  109. Xie S, Tu Z (2015) Holistically-nested edge detection. In: 2015 IEEE International conference on computer vision, ICCV 2015, Santiago, Chile, pp 1395–1403. https://doi.org/10.1109/ICCV.2015.164. Accessed 7–13 Dec 2015

  110. He J, Zhang S, Yang M, Shan Y, Huang T (2019) Bi-directional cascade network for perceptual edge detection. In: IEEE Conference on computer vision and pattern recognition, CVPR 2019, Long Beach, CA, USA, pp 3828–3837. https://doi.org/10.1109/CVPR.2019.00395. http://openaccess.thecvf.com/content_CVPR_2019/html/He_Bi-Directional_Cascade_Network_for_Perceptual_Edge_Detection_CVPR_2019_paper.html. Accessed 16–20 June 2019

  111. Yuan F, Li G, Xia X, Lei B, Shi J (2019) Fusing texture, edge and line features for smoke recognition. IET Image Process 13(14):2805–2812. https://doi.org/10.1049/iet-ipr.2019.0012

    Article  Google Scholar 

  112. Xiang D, Tang T, Quan S, Guan D, Su Y (2019) Adaptive superpixel generation for SAR images with linear feature clustering and edge constraint. IEEE Trans Geosci Remote Sens 57(6):3873–3889. https://doi.org/10.1109/TGRS.2018.2888891

    Article  ADS  Google Scholar 

  113. Matas J, Chum O, Urban M, Pajdla T (2004) Robust wide-baseline stereo from maximally stable extremal regions. Image Vis Comput 22(10):761–767. https://doi.org/10.1016/j.imavis.2004.02.006

    Article  Google Scholar 

  114. Mikolajczyk K, Tuytelaars T, Schmid C, Zisserman A, Matas J, Schaffalitzky F, Kadir T, Gool LV (2005) A comparison of affine region detectors. Int J Comput Vis 65(1–2):43–72. https://doi.org/10.1007/s11263-005-3848-x

    Article  Google Scholar 

  115. Kimmel R, Zhang C, Bronstein AM, Bronstein MM (2011) Are MSER features really interesting? IEEE Trans Pattern Anal Mach Intell 33(11):2316–2320. https://doi.org/10.1109/TPAMI.2011.133

    Article  PubMed  Google Scholar 

  116. Vaggu PR, Deshpande KB, Datta-Barua S, Bust GS, Hampton DL, Rubio AL, Conroy JP (2023) Morphological and spectral features of ionospheric structures at E- and f-region altitudes over poker flat analyzed using modeling and observations. Sensors. 23(5):2477. https://doi.org/10.3390/s23052477

    Article  ADS  PubMed  PubMed Central  Google Scholar 

  117. Yang D, Mu K, Yang H, Luo M, Lv W, Zhang B, Liu H, Wang Z (2021) A study on prediction model of gully volume based on morphological features in the JINSHA dry-hot valley region of southwest china. ISPRS Int J Geo Inf 10(5):300. https://doi.org/10.3390/ijgi10050300

    Article  Google Scholar 

  118. Belongie SJ, Malik J, Puzicha J (2000) Shape context: a new descriptor for shape matching and object recognition. In: Leen TK, Dietterich TG, Tresp V (eds) Advances in neural information processing systems 13, papers from neural information processing systems (NIPS) 2000, Denver, CO, USA, pp 831–837. https://proceedings.neurips.cc/paper/2000/hash/c44799b04a1c72e3c8593a53e8000c78-Abstract.html

  119. Gonçalves H, Corte-Real L, Gonçalves JA (2011) Automatic image registration through image segmentation and SIFT. IEEE Trans Geosci Remote Sens 49(7):2589–2600. https://doi.org/10.1109/TGRS.2011.2109389

    Article  ADS  Google Scholar 

  120. Ma J, Zhao J, Ma Y, Tian J (2015) Non-rigid visible and infrared face registration via regularized gaussian fields criterion. Pattern Recognit 48(3):772–784. https://doi.org/10.1016/j.patcog.2014.09.005

    Article  ADS  Google Scholar 

  121. Ye Y, Shen L (2016) Hopc: a novel similarity metric based on geometric structural properties for multi-modal remote sensing image matching. ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences. 3:9

    Article  Google Scholar 

  122. Fan J, Wu Y, Li M, Liang W, Cao Y (2018) SAR and optical image registration using nonlinear diffusion and phase congruency structural descriptor. IEEE Trans Geosci Remote Sens 56(9):5368–5379. https://doi.org/10.1109/TGRS.2018.2815523

    Article  ADS  Google Scholar 

  123. Liang A, Zhang H, Hua H, Chen W (2023) To drop or to select: reduce the negative effects of disturbance features for point cloud classification from an interpretable perspective. IEEE Access 11:36184–36202. https://doi.org/10.1109/ACCESS.2023.3266340

    Article  Google Scholar 

  124. Xu L, Yin H, Shi T, Jiang D, Huang B (2023) EPLF-VINS: real-time monocular visual-inertial SLAM with efficient point-line flow features. IEEE Robotics Autom Lett 8(2):752–759. https://doi.org/10.1109/LRA.2022.3231983

    Article  Google Scholar 

  125. Yuan C, Xu Y, Zhou Q (2023) PLDS-SLAM: point and line features SLAM in dynamic environment. Remote Sens 15(7):1893. https://doi.org/10.3390/rs15071893

    Article  ADS  Google Scholar 

  126. Yue X, Liu Z, Zhu J, Gao X, Yang B, Tian Y (2022) Coarse-fine point cloud registration based on local point-pair features and the iterative closest point algorithm. Appl Intell 52(11):12569–12583. https://doi.org/10.1007/s10489-022-03201-3

    Article  Google Scholar 

  127. Harris CG, Stephens M (1988) A combined corner and edge detector. In: Taylor CJ (ed) Proceedings of the Alvey Vision Conference, AVC 1988, Manchester, UK, pp 1–6. https://doi.org/10.5244/C.2.23

  128. Smith SM, Brady JM (1997) SUSAN - A new approach to low level image processing. Int J Comput Vis 23(1):45–78. https://doi.org/10.1023/A:1007963824710

    Article  Google Scholar 

  129. Rosten E, Drummond T (2006) Machine learning for high-speed corner detection. In: Leonardis A, Bischof H, Pinz A (eds) Computer Vision - ECCV 2006, 9th European conference on computer vision, Graz, Austria, Proceedings, Part I. Lect Notes Comput Sci, vol 3951, pp 430–443. https://doi.org/10.1007/11744023_34. Accessed 7–13 May 2006

  130. Jin H, Zhang Z, Yuan P (2022) Improving chinese word representation using four corners features. IEEE Trans Big Data 8(4):982–993. https://doi.org/10.1109/TBDATA.2021.3106582

    Article  Google Scholar 

  131. Algethami N, Redfern S (2020) A robust tracking-by-detection algorithm using adaptive accumulated frame differencing and corner features. J Imaging 6(4):25. https://doi.org/10.3390/jimaging6040025

    Article  PubMed  PubMed Central  Google Scholar 

  132. Shang Y, Huang Y, Liao D, Wang R, Pei J, Zhang Y, Yang J (2022) A cascaded harbor detection method for SAR image based on corner and coastline features. In: IEEE International Geoscience and Remote Sensing Symposium, IGARSS 2022, Kuala Lumpur, Malaysia, pp 2622–2625 (2022). https://doi.org/10.1109/IGARSS46834.2022.9884196

  133. Lowe DG (2004) Distinctive image features from scale-invariant keypoints. Int J Comput Vis 60(2):91–110. https://doi.org/10.1023/B:VISI.0000029664.99615.94

    Article  Google Scholar 

  134. Agrawal M, Konolige K, Blas MR (2008) Censure: center surround extremas for realtime feature detection and matching. In: Forsyth DA, Torr PHS, Zisserman A (eds) Computer Vision - ECCV 2008, 10th European conference on computer vision, Marseille, France, Proceedings, Part IV. Lect Notes Comput Sci, vol 5305, pp 102–115. https://doi.org/10.1007/978-3-540-88693-8_8. Accessed 12–18 Oct 2008

  135. Yi KM, Trulls E, Lepetit V, Fua P (2016) LIFT: learned invariant feature transform. In: Leibe B, Matas J, Sebe N, Welling M (eds) Computer Vision - ECCV 2016 - 14th European Conference, Amsterdam, The Netherlands, Proceedings, Part VI. Lect Notes Comput Sci, vol 9910, pp 467–483 (2016). https://doi.org/10.1007/978-3-319-46466-4_28. Accessed 11–14 Oct 2016

  136. Trajkovic M, Hedley M (1998) Fast corner detection. Image Vis Comput 16(2):75–87. https://doi.org/10.1016/S0262-8856(97)00056-5

    Article  Google Scholar 

  137. Liu Y, Gong X, Yang Y (2021) A multilayer fusion network with rotation- invariant and dynamic feature representation for multiview low-altitude image registration. IEEE Geosci Remote Sens Lett 18(6):1019–1023. https://doi.org/10.1109/LGRS.2020.2992816

    Article  ADS  Google Scholar 

  138. Pallotta L, Giunta G, Clemente C (2021) SAR image registration in the presence of rotation and translation: a constrained least squares approach. IEEE Geosci Remote Sens Lett 18(9):1595–1599. https://doi.org/10.1109/LGRS.2020.3005198

    Article  ADS  Google Scholar 

  139. Strecha C, Lindner AJ, Ali K, Fua P (2009) Training for task specific keypoint detection. In: Denzler J, Notni G, Süße H (eds) Pattern Recognition, 31st DAGM Symposium, Jena, Germany, Proceedings. Lecture Notes in Computer Science, vol 5748, pp 151–160. https://doi.org/10.1007/978-3-642-03798-6_16. Accessed 9–11 Sept 2009

  140. Hartmann W, Havlena M, Schindler K (2014) Predicting matchability. In: 2014 IEEE Conference on Computer Vision and Pattern Recognition, CVPR 2014, Columbus, OH, USA, pp 9–16. https://doi.org/10.1109/CVPR.2014.9. Accessed 23–28 June 2014

  141. Ma J, Jiang X, Fan A, Jiang J, Yan J (2021) Image matching from handcrafted to deep features: a survey. Int J Comput Vis 129(1):23–79. https://doi.org/10.1007/s11263-020-01359-2

    Article  MathSciNet  Google Scholar 

  142. Rosten E, Porter RB, Drummond T (2010) Faster and better: a machine learning approach to corner detection. IEEE Trans Pattern Anal Mach Intell 32(1):105–119. https://doi.org/10.1109/TPAMI.2008.275

    Article  PubMed  Google Scholar 

  143. Li Z, Mahapatra D, Tielbeek JAW, Stoker J, Vliet LJ, Vos FM (2016) Image registration based on autocorrelation of local structure. IEEE Trans Medical Imaging 35(1):63–75. https://doi.org/10.1109/TMI.2015.2455416

    Article  CAS  PubMed  Google Scholar 

  144. Moravec HP (1977) Techniques towards automatic visual obstacle avoidance

  145. Shi J, Tomasi C (1994) Good features to track. In: Conference on Computer Vision and Pattern Recognition, CVPR 1994, Seattle, WA, USA, pp 593–600. https://doi.org/10.1109/CVPR.1994.323794. Accessed 21–23 June 1994

  146. Ye Y, Bruzzone L, Shan J, Bovolo F, Zhu Q (2019) Fast and robust matching for multimodal remote sensing image registration. IEEE Trans Geosci Remote Sens 57(11):9059–9070. https://doi.org/10.1109/TGRS.2019.2924684

    Article  ADS  Google Scholar 

  147. Mair E, Hager GD, Burschka D, Suppa M, Hirzinger G (2010) Adaptive and generic corner detection based on the accelerated segment test. In: Daniilidis K, Maragos P, Paragios N (eds) Computer vision - ECCV 2010, 11th European conference on computer vision, Heraklion, Crete, Greece, Proceedings, Part II. Lect Notes Comput Sci, vol 6312, pp 183–196. https://doi.org/10.1007/978-3-642-15552-9_14. Accessed 5–11 Sept 2010

  148. Aldana-Iuit J, Mishkin D, Chum O, Matas J (2016) In the saddle: Chasing fast and repeatable features. In: 23rd International conference on pattern recognition, ICPR 2016, Cancún, Mexico, pp 675–680. https://doi.org/10.1109/ICPR.2016.7899712. Accessed 4–8 Dec 2016

  149. Zhang X, Hu Q, Ai M, Ren X (2018) A multitemporal UAV images registration approach using phase congruency. In: Hu S, Ye X, Yang K, Fan H (eds) 26th International Conference on Geoinformatics, Geoinformatics 2018, Kunming, China, pp 1–6. https://doi.org/10.1109/GEOINFORMATICS.2018.8557189. Accessed 28–30 June 2018

  150. Zhao B, Xu T, Chen Y, Li T, Sun X (2019) Automatic and robust infrared-visible image sequence registration via spatio-temporal association. Sensors 19(5):997. https://doi.org/10.3390/s19050997

    Article  ADS  PubMed  PubMed Central  Google Scholar 

  151. Belongie SJ, Malik J, Puzicha J (2002) Shape matching and object recognition using shape contexts. IEEE Trans Pattern Anal Mach Intell 24(4):509–522. https://doi.org/10.1109/34.993558

    Article  Google Scholar 

  152. Pinheiro AMG, Ghanbari M (2010) Piecewise approximation of contours through scale-space selection of dominant points. IEEE Trans Image Process 19(6):1442–1450. https://doi.org/10.1109/TIP.2010.2041415

    Article  ADS  MathSciNet  PubMed  Google Scholar 

  153. Masood A, Sarfraz M (2007) Corner detection by sliding rectangles along planar curves. Comput Graph 31(3):440–448. https://doi.org/10.1016/j.cag.2007.01.021

    Article  Google Scholar 

  154. Zhang X, Wang H, Smith AWB, Xu L, Lovell BC, Yang D (2010) Corner detection based on gradient correlation matrices of planar curves. Pattern Recognit 43(4):1207–1223. https://doi.org/10.1016/j.patcog.2009.10.017

    Article  ADS  Google Scholar 

  155. Zhang X, Qu Y, Yang D, Wang H, Kymer JD (2015) Laplacian scale-space behavior of planar curve corners. IEEE Trans Pattern Anal Mach Intell 37(11):2207–2217. https://doi.org/10.1109/TPAMI.2015.2396074

    Article  PubMed  Google Scholar 

  156. Awrangjeb M, Lu G (2008) Robust image corner detection based on the chord-to-point distance accumulation technique. IEEE Trans Multim 10(6):1059–1072. https://doi.org/10.1109/TMM.2008.2001384

    Article  Google Scholar 

  157. Mustafa A, Kim H, Hilton A (2019) MSFD: multi-scale segmentation-based feature detection for wide-baseline scene reconstruction. IEEE Trans Image Process 28(3):1118–1132. https://doi.org/10.1109/TIP.2018.2872906

    Article  ADS  MathSciNet  PubMed  Google Scholar 

  158. Lowe DG (1999) Object recognition from local scale-invariant features. In: Proceedings of the international conference on computer vision, Kerkyra, Corfu, Greece, pp 1150–1157. https://doi.org/10.1109/ICCV.1999.790410. Accessed 20–25 Sept 1999

  159. Li Z, Zhang H, Chen J, Huang Y (2022) Robust optical and SAR image registration based on phase congruency scale space. IEEE Geosci Remote Sens Lett 19:1–5. https://doi.org/10.1109/LGRS.2022.3188010

    Article  CAS  Google Scholar 

  160. Liang Y, Su T, Lv N, Guo J, Liu J (2022) Adaptive registration for optical and SAR images with a scale-constrained matching method. IEEE Geosci Remote Sens Lett 19:1–5. https://doi.org/10.1109/LGRS.2022.3200373

    Article  Google Scholar 

  161. Mikolajczyk K, Schmid C (2001) Indexing based on scale invariant interest points. In: Proceedings of the eighth international conference on computer vision (ICCV-01), Vancouver, British Columbia, Canada, vol 1, pp 525–531. https://doi.org/10.1109/ICCV.2001.10069. Accessed 7–14 July 2001

  162. Mikolajczyk K, Schmid C (2004) Scale & affine invariant interest point detectors. Int J Comput Vis 60(1):63–86. https://doi.org/10.1023/B:VISI.0000027790.02288.f2

    Article  Google Scholar 

  163. Ferraz L, Binefa X (2012) A sparse curvature-based detector of affine invariant blobs. Comput Vis Image Underst 116(4):524–537. https://doi.org/10.1016/j.cviu.2011.12.002

    Article  Google Scholar 

  164. Tuytelaars T, Gool LV (2004) Matching widely separated views based on affine invariant regions. Int J Comput Vis 59(1):61–85. https://doi.org/10.1023/B:VISI.0000020671.28016.e8

    Article  Google Scholar 

  165. Deng H, Zhang W, Mortensen EN, Dietterich TG, Shapiro LG (2007) Principal curvature-based region detector for object recognition. In: 2007 IEEE Computer society conference on computer vision and pattern recognition (CVPR 2007), Minneapolis, Minnesota, USA (2007). https://doi.org/10.1109/CVPR.2007.382972. Accessed 18–23 June 2007

  166. Forssén P (2007) Maximally stable colour regions for recognition and matching. In: 2007 IEEE Computer society conference on computer vision and pattern recognition (CVPR 2007), Minneapolis, Minnesota, USA. https://doi.org/10.1109/CVPR.2007.383120. Accessed 18–23 June 2007

  167. Marsala C, Detyniecki M, Usunier N, Amini M (2007) Uhigh-level feature detection with forests of fuzzy decision trees combined with the rankboost algorithm. In: Over P, Awad G, Kraaij W, Smeaton AF (eds) TRECVID 2007 Workshop Participants Notebook Papers, Gaithersburg, MD, USA. http://www-nlpir.nist.gov/projects/tvpubs/tv7.papers/lip6.pdf

  168. Marsala C, Detyniecki M (2008) UPMC-LIP6 at trecvid’08: balanced and unbalanced forests of fuzzy decision trees for high-level feature detection. In: Over P, Awad G, Rose RT, Fiscus JG, Kraaij W, Smeaton AF (eds) TRECVID 2008 Workshop Participants Notebook Papers, Gaithersburg, MD, USA. http://www-nlpir.nist.gov/projects/tvpubs/tv8.papers/upmc-lip6.pdf

  169. Yu S, Li P, Lin H, Rohani E, Choi G, Shao B, Wang Q (2013) Support vector machine based detection of drowsiness using minimum EEG features. In: International conference on social computing, SocialCom 2013, SocialCom/PASSAT/BigData/EconCom/BioMedCom 2013, Washington, DC, USA, pp 827–835. https://doi.org/10.1109/SocialCom.2013.124. Accessed 8-14 Sept 2013

  170. Park JI, Baek SH, Jeong MK, Bae SJ (2009) Dual features functional support vector machines for fault detection of rechargeable batteries. IEEE Trans Syst Man Cybern Part C 39(4):480–485. https://doi.org/10.1109/TSMCC.2009.2014642

    Article  Google Scholar 

  171. Verdie Y, Yi KM, Fua P, Lepetit V (2015) TILDE: a temporally invariant learned detector. In: IEEE Conference on Computer Vision and Pattern Recognition, CVPR 2015, Boston, MA, USA, pp 5279–5288. https://doi.org/10.1109/CVPR.2015.7299165. Accessed 7–12 June 2015

  172. Zhang X, Yu FX, Karaman S, Chang S (2017) Learning discriminative and transformation covariant local feature detectors. In: 2017 IEEE Conference on Computer Vision and Pattern Recognition, CVPR 2017, Honolulu, HI, USA, pp 4923–4931. https://doi.org/10.1109/CVPR.2017.523. Accessed 21–26 July 2017

  173. DeTone D, Malisiewicz T, Rabinovich A (2018) Superpoint: self-supervised interest point detection and description. In: 2018 IEEE Conference on computer vision and pattern recognition workshops, CVPR workshops 2018, Salt Lake City, UT, USA, pp 224–236. https://doi.org/10.1109/CVPRW.2018.00060. http://openaccess.thecvf.com/content_cvpr_2018_workshops/w9/html/DeTone_SuperPoint_Self-Supervised_Interest_CVPR_2018_paper.html. Accessed 18–22 June 2018

  174. Savinov N, Seki A, Ladicky L, Sattler T, Pollefeys M (2017) Quad-networks: unsupervised learning to rank for interest point detection. In: 2017 IEEE Conference on computer vision and pattern recognition, CVPR 2017, Honolulu, HI, USA, pp 3929–3937. https://doi.org/10.1109/CVPR.2017.418. Accessed 21–26 July 2017

  175. Georgakis G, Karanam S, Wu Z, Ernst J, Kosecká J (2018) End-to-end learning of keypoint detector and descriptor for pose invariant 3d matching. In: 2018 IEEE Conference on computer vision and pattern recognition, CVPR 2018, Salt Lake City, UT, USA, pp 1965–1973. https://doi.org/10.1109/CVPR.2018.00210. Accessed 18–22 June 2018

  176. Shen X, Wang C, Li X, Yu Z, Li J, Wen C, Cheng M, He Z (2019) Rf-net: an end-to-end image matching network based on receptive field. In: IEEE Conference on computer vision and pattern recognition, CVPR 2019, Long Beach, CA, USA, pp 8132–8140. https://doi.org/10.1109/CVPR.2019.00832. http://openaccess.thecvf.com/content_CVPR_2019/html/Shen_RF-Net_An_End-To-End_Image_Matching_Network_Based_on_Receptive_Field_CVPR_2019_paper.html. Accessed 16–20 June 2019

  177. Ma W, Wen Z, Wu Y, Jiao L, Gong M, Zheng Y, Liu L (2017) Remote sensing image registration with modified SIFT and enhanced feature matching. IEEE Geosci Remote Sens Lett 14(1):3–7. https://doi.org/10.1109/LGRS.2016.2600858

    Article  ADS  Google Scholar 

  178. Alcantarilla PF, Bartoli A, Davison AJ (2012) KAZE features. In: Fitzgibbon AW, Lazebnik S, Perona P, Sato Y, Schmid C (eds) Computer Vision - ECCV 2012 - 12th European conference on computer vision, Florence, Italy, Proceedings, Part VI. Lect Notes Comput Sci, vol 7577, pp 214–227. https://doi.org/10.1007/978-3-642-33783-3_16. Accessed 7–13 Oct 2012

  179. Dong J, Soatto S (2015) Domain-size pooling in local descriptors: DSP-SIFT. In: IEEE Conference on computer vision and pattern recognition, CVPR 2015, Boston, MA, USA, pp 5097–5106. https://doi.org/10.1109/CVPR.2015.7299145. Accessed 7–12 June 2015

  180. Tola E, Lepetit V, Fua P (2010) DAISY: an efficient dense descriptor applied to wide-baseline stereo. IEEE Trans Pattern Anal Mach Intell 32(5):815–830. https://doi.org/10.1109/TPAMI.2009.77

    Article  PubMed  Google Scholar 

  181. Morel J, Yu G (2009) ASIFT: a new framework for fully affine invariant image comparison. SIAM J Imaging Sci 2(2):438–469. https://doi.org/10.1137/080732730

    Article  MathSciNet  Google Scholar 

  182. Dong G, Yan H, Lv G, Dong X (2019) Exploring the utilization of gradient information in SIFT based local image descriptors. Symmetry 11(8):998. https://doi.org/10.3390/sym11080998

    Article  ADS  Google Scholar 

  183. AlShehri H, Hussain M, Aboalsamh HA, Zuair MAA (2018) Cross-sensor fingerprint matching method based on orientation, gradient, and gabor-hog descriptors with score level fusion. IEEE Access 6:28951–28968. https://doi.org/10.1109/ACCESS.2018.2840330

    Article  Google Scholar 

  184. Leutenegger S, Chli M, Siegwart R (2011) BRISK: binary robust invariant scalable keypoints. In: Metaxas DN, Quan L, Sanfeliu A, Gool LV (eds) IEEE International conference on computer vision, ICCV 2011, Barcelona, Spain, pp 2548–2555. https://doi.org/10.1109/ICCV.2011.6126542. Accessed 6–13 Nov 2011

  185. Alahi A, Ortiz R, Vandergheynst P (2012) FREAK: fast retina keypoint. In: 2012 IEEE Conference on computer vision and pattern recognition, Providence, RI, USA, pp 510–517. https://doi.org/10.1109/CVPR.2012.6247715. Accessed 16–21 June 2012

  186. Rathee N, Ganotra D (2016) Multiview distance metric learning on facial feature descriptors for automatic pain intensity detection. Comput Vis Image Underst 147:77–86. https://doi.org/10.1016/j.cviu.2015.12.004

    Article  Google Scholar 

  187. Zagoruyko S, Komodakis N (2015) Learning to compare image patches via convolutional neural networks. In: IEEE Conference on computer vision and pattern recognition, CVPR 2015, Boston, MA, USA, pp 4353–4361. https://doi.org/10.1109/CVPR.2015.7299064. Accessed 7–12 June 2015

  188. Wang J, Zhou F, Wen S, Liu X, Lin Y (2017) Deep metric learning with angular loss. In: IEEE International conference on computer vision, ICCV 2017, Venice, Italy, pp 2612–2620. https://doi.org/10.1109/ICCV.2017.283. Accessed 22–29 Oct 2017

  189. Simo-Serra E, Trulls E, Ferraz L, Kokkinos I, Fua P, Moreno-Noguer F (2015) Discriminative learning of deep convolutional feature point descriptors. In: 2015 IEEE International conference on computer vision, ICCV 2015, Santiago, Chile, pp 118–126. https://doi.org/10.1109/ICCV.2015.22. Accessed 7–13 Dec 2015

  190. Balntas V, Johns E, Tang L, Mikolajczyk K (2016) Pn-net: Conjoined triple deep network for learning local image descriptors. arXiv:1601.05030

  191. Wei X, Zhang Y, Gong Y, Zheng N (2018) Kernelized subspace pooling for deep local descriptors. In: 2018 IEEE Conference on computer vision and pattern recognition, CVPR 2018, Salt Lake City, UT, USA, pp 1867–1875. https://doi.org/10.1109/CVPR.2018.00200. http://openaccess.thecvf.com/content_cvpr_2018/html/Wei_Kernelized_Subspace_Pooling_CVPR_2018_paper.html. Accessed 18–22 June 2018

  192. Han X, Leung T, Jia Y, Sukthankar R, Berg AC (2015) Matchnet: unifying feature and metric learning for patch-based matching. In: IEEE Conference on computer vision and pattern recognition, CVPR 2015, Boston, MA, USA, pp 3279–3286. https://doi.org/10.1109/CVPR.2015.7298948. Accessed 7–12 June 2015

  193. Luo Z, Shen T, Zhou L, Zhang J, Yao Y, Li S, Fang T, Quan L (2019) Contextdesc: local descriptor augmentation with cross-modality context. In: IEEE Conference on Computer Vision and Pattern Recognition, CVPR 2019, Long Beach, CA, USA, pp 2527–2536. https://doi.org/10.1109/CVPR.2019.00263. http://openaccess.thecvf.com/content_CVPR_2019/html/Luo_ContextDesc_Local_Descriptor_Augmentation_With_Cross-Modality_Context_CVPR_2019_paper.html. Accessed 16–20 June 2019

  194. Balntas, V, Riba E, Ponsa D, Mikolajczyk K (2016) Learning local feature descriptors with triplets and shallow convolutional neural networks. In: Wilson RC, Hancock ER, Smith WAP (eds) Proceedings of the British Machine Vision Conference 2016, BMVC 2016, York, UK. http://www.bmva.org/bmvc/2016/papers/paper119/index.html. Accessed 19–22 Sept 2016

  195. Mishchuk A, Mishkin D, Radenovic F, Matas J (2017) Working hard to know your neighbor’s margins: local descriptor learning loss. In: Guyon I, Luxburg U, Bengio S, Wallach HM, Fergus R, Vishwanathan SVN, Garnett R (eds) Adv Neural Inf Proc Syst 30: Annual Conference on Neural Information Processing Systems 2017, Long Beach, CA, USA, pp 4826–4837. https://proceedings.neurips.cc/paper/2017/hash/831caa1b600f852b7844499430ecac17-Abstract.html. Accessed 4–9 Dec 2017

  196. Loiola EM, Abreu NMM, Netto POB, Hahn P, Querido TM (2007) A survey for the quadratic assignment problem. Eur J Oper Res 176(2):657–690. https://doi.org/10.1016/j.ejor.2005.09.032

    Article  MathSciNet  Google Scholar 

  197. Babai L (2018) Group, graphs, algorithms: the graph isomorphism problem. In: Proceedings of the International Congress of Mathematicians: Rio de Janeiro 2018, pp 3319–3336. World Scientific

  198. Zanfir A, Sminchisescu C (2018) Deep learning of graph matching. In: 2018 IEEE Conference on Computer Vision and Pattern Recognition, CVPR 2018, Salt Lake City, UT, USA, pp 2684–2693. https://doi.org/10.1109/CVPR.2018.00284. http://openaccess.thecvf.com/content_cvpr_2018/html/Zanfir_Deep_Learning_of_CVPR_2018_paper.html. Accessed 18–22 June 2018

  199. Liu H, Wang T, Li Y, Lang C, Jin Y, Ling H (2023) Joint graph learning and matching for semantic feature correspondence. Pattern Recognit 134:109059. https://doi.org/10.1016/j.patcog.2022.109059

    Article  Google Scholar 

  200. Liu C, Niu D, Yang X, Zhao X (2023) Graph matching based on feature and spatial location information. Vis Comput 39(2):711–722. https://doi.org/10.1007/s00371-021-02369-y

    Article  Google Scholar 

  201. Mallick AK, Mukhopadhyay S (2022) Video retrieval framework based on color co-occurrence feature of adaptive low rank extracted keyframes and graph pattern matching. Inf Process Manag 59(2):102870. https://doi.org/10.1016/j.ipm.2022.102870

    Article  Google Scholar 

  202. Huang R, Yao W, Xu Y, Ye Z, Stilla U (2022) Pairwise point cloud registration using graph matching and rotation-invariant features. IEEE Geosci Remote Sens Lett 19:1–5. https://doi.org/10.1109/LGRS.2021.3109470

    Article  Google Scholar 

  203. Cook DJ, Holder LB (2006) Mining Graph Data. Wiley

  204. Chetverikov D, Stepanov D, Krsek P (2005) Robust euclidean alignment of 3d point sets: the trimmed iterative closest point algorithm. Image Vis Comput 23(3):299–309. https://doi.org/10.1016/j.imavis.2004.05.007

    Article  Google Scholar 

  205. Pomerleau F, Colas F, Siegwart R, Magnenat S (2013) Comparing ICP variants on real-world data sets - open-source library and experimental protocol. Auton Robots 34(3):133–148. https://doi.org/10.1007/s10514-013-9327-2

    Article  Google Scholar 

  206. Maharjan AM, Yuan X (2022) Registration of human point set using automatic key point detection and region-aware features. In: IEEE/CVF Winter Conference on Applications of Computer Vision, WACV 2022, Waikoloa, HI, USA, pp 2264–2272. https://doi.org/10.1109/WACV51458.2022.00232. https://doi.org/10.1109/WACV51458.2022.00232. Accessed 3–8 Jan 2022

  207. Liu Y, Du S, Cui W, Wang X, Mou Q, Zhao J, Guo Y, Zhang Y (2021) Precise point set registration based on feature fusion. Comput J 64(7):1039–1055. https://doi.org/10.1093/comjnl/bxab114

    Article  Google Scholar 

  208. Li M, Zhang M, Niu D, Hassan MU, Zhao X, Li N (2020) Point set registration based on feature point constraints. Vis Comput 36(9):1725–1738. https://doi.org/10.1007/s00371-019-01771-x

    Article  Google Scholar 

  209. Granger S, Pennec X (2002) Multi-scale EM-ICP: a fast and robust approach for surface registration. In: Heyden A, Sparr G, Nielsen M, Johansen P (eds) Computer Vision - ECCV 2002, 7th European Conference on Computer Vision, Copenhagen, Denmark, Proceedings, Part IV. Lect Notes Comput Sci, vol 2353, pp 418–432. Springer. https://doi.org/10.1007/3-540-47979-1_28. Accessed 28–31 May 2002

  210. Fitzgibbon AW (2003) Robust registration of 2d and 3d point sets. Image Vis Comput 21(13–14):1145–1153. https://doi.org/10.1016/j.imavis.2003.09.004

    Article  Google Scholar 

  211. Ma J, Zhao J, Yuille AL (2016) Non-rigid point set registration by preserving global and local structures. IEEE Trans Image Process 25(1):53–64. https://doi.org/10.1109/TIP.2015.2467217

    Article  ADS  MathSciNet  PubMed  Google Scholar 

  212. Zhang S, Yang Y, Yang K, Luo Y, Ong SH (2017) Point set registration with global-local correspondence and transformation estimation. In: IEEE International conference on computer vision, ICCV 2017, Venice, Italy, pp 2688–2696. https://doi.org/10.1109/ICCV.2017.291. Accessed 22-29 Oct 2017

  213. Papazov C, Burschka D (2011) Stochastic global optimization for robust point set registration. Comput Vis Image Underst 115(12):1598–1609. https://doi.org/10.1016/j.cviu.2011.05.008

    Article  Google Scholar 

  214. Campbell D, Petersson L (2016) GOGMA: globally-optimal gaussian mixture alignment. In: 2016 IEEE Conference on computer vision and pattern recognition, CVPR 2016, Las Vegas, NV, USA, pp 5685–5694. https://doi.org/10.1109/CVPR.2016.613. Accessed 27–30 June 2016

  215. Yang J, Li H, Campbell D, Jia Y (2016) Go-icp: a globally optimal solution to 3d ICP point-set registration. IEEE Trans Pattern Anal Mach Intell 38(11):2241–2254. https://doi.org/10.1109/TPAMI.2015.2513405

    Article  PubMed  Google Scholar 

  216. Liu Y, Wang C, Song Z, Wang M (2018) Efficient global point cloud registration by matching rotation invariant features through translation search. In: Ferrari V, Hebert M, Sminchisescu C, Weiss Y (eds) Computer vision - ECCV 2018 - 15th European conference, Munich, Germany, Proceedings, Part XII. Lect Notes Comput Sci, vol 11216, pp 460–474. https://doi.org/10.1007/978-3-030-01258-8_28. Accessed 8–14 Sept 2018

  217. Maron H, Dym N, Kezurer I, Kovalsky SZ, Lipman Y (2016) Point registration via efficient convex relaxation. ACM Trans Graph 35(4):73–17312. https://doi.org/10.1145/2897824.2925913

    Article  Google Scholar 

  218. Brachmann E, Krull A, Nowozin S, Shotton J, Michel F, Gumhold S, Rother C (2017) DSAC - differentiable RANSAC for camera localization. In: 2017 IEEE Conference on Computer Vision and Pattern Recognition, CVPR 2017, Honolulu, HI, USA, pp 2492–2500. https://doi.org/10.1109/CVPR.2017.267. https://doi.org/10.1109/CVPR.2017.267. Accessed 21–26 July 2017

  219. Brachmann E, Rother C (2019) Neural-guided RANSAC: learning where to sample model hypotheses. In: 2019 IEEE/CVF International conference on computer vision, ICCV 2019, Seoul, Korea (South), pp 4321–4330. https://doi.org/10.1109/ICCV.2019.00442. Accessed Oct 27 - Nov 2 2019

  220. Kluger F, Brachmann E, Ackermann H, Rother C, Yang MY, Rosenhahn B (2020) CONSAC: robust multi-model fitting by conditional sample consensus. In: 2020 IEEE/CVF Conference on computer vision and pattern recognition, CVPR 2020, Seattle, WA, USA, pp 4633–4642. https://doi.org/10.1109/CVPR42600.2020.00469. https://openaccess.thecvf.com/content_CVPR_2020/html/Kluger_CONSAC_Robust_Multi-Model_Fitting_by_Conditional_Sample_Consensus_CVPR_2020_paper.html. Accessed 13–19 June 2020

  221. Sarlin P, DeTone D, Malisiewicz T, Rabinovich A (2020) Superglue: learning feature matching with graph neural networks. In: 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition, CVPR 2020, Seattle, WA, USA, pp 4937–4946. https://doi.org/10.1109/CVPR42600.2020.00499. https://openaccess.thecvf.com/content_CVPR_2020/html/Sarlin_SuperGlue_Learning_Feature_Matching_With_Graph_Neural_Networks_CVPR_2020_paper.html. Accessed 13–19 June 2020

  222. Zhang J, Sun D, Luo Z, Yao A, Chen H, Zhou L, Shen T, Chen Y, Quan L, Liao H (2022) Oanet: learning two-view correspondences and geometry using order-aware network. IEEE Trans Pattern Anal Mach Intell 44(6):3110–3122. https://doi.org/10.1109/TPAMI.2020.3048013

    Article  PubMed  Google Scholar 

  223. Raguram R, Chum O, Pollefeys M, Matas J, Frahm J (2013) USAC: a universal framework for random sample consensus. IEEE Trans Pattern Anal Mach Intell 35(8):2022–2038. https://doi.org/10.1109/TPAMI.2012.257

    Article  PubMed  Google Scholar 

  224. Barath D, Matas J, Noskova J (2019) MAGSAC: marginalizing sample consensus. In: IEEE Conference on Computer Vision and Pattern Recognition, CVPR 2019, Long Beach, CA, USA, pp 10197–10205. https://doi.org/10.1109/CVPR.2019.01044. http://openaccess.thecvf.com/content_CVPR_2019/html/Barath_MAGSAC_Marginalizing_Sample_Consensus_CVPR_2019_paper.html

  225. Ma J, Zhao J, Tian J, Yuille AL, Tu Z (2014) Robust point matching via vector field consensus. IEEE Trans Image Process 23(4):1706–1721. https://doi.org/10.1109/TIP.2014.2307478

    Article  ADS  MathSciNet  PubMed Central  Google Scholar 

  226. Ma J, Qiu W, Zhao J, Ma Y, Yuille AL, Tu Z (2015) Robust l\({}_{\text{2 }}\)e estimation of transformation for non-rigid registration. IEEE Trans Signal Process 63(5):1115–1129. https://doi.org/10.1109/TSP.2014.2388434

    Article  ADS  MathSciNet  Google Scholar 

  227. Ma J, Jiang J, Liu C, Li Y (2017) Feature guided gaussian mixture model with semi-supervised EM and local geometric constraint for retinal image registration. Inf Sci 417:128–142. https://doi.org/10.1016/j.ins.2017.07.010

    Article  MathSciNet  Google Scholar 

  228. Chen H, Luo Z, Zhang J, Zhou L, Bai X, Hu Z, Tai C, Quan L (2021) Learning to match features with seeded graph matching network. In: 2021 IEEE/CVF International conference on computer vision, ICCV 2021, Montreal, QC, Canada, pp 6281–6290. https://doi.org/10.1109/ICCV48922.2021.00624. Accessed 10–17 Oct 2021

  229. Cai Y, Li L, Wang D, Li X, Liu X (2023) Htmatch: an efficient hybrid transformer based graph neural network for local feature matching. Signal Process 204:108859. https://doi.org/10.1016/j.sigpro.2022.108859

    Article  Google Scholar 

  230. Kuang Z, Li J, He M, Wang T, Zhao Y (2022) Densegap: graph-structured dense correspondence learning with anchor points. In: 26th International conference on pattern recognition, ICPR 2022, Montreal, QC, Canada, pp 542–549. https://doi.org/10.1109/ICPR56361.2022.9956472. Accessed 21–25 Aug 2022

  231. Ono Y, Trulls E, Fua P, Yi KM (2018) Lf-net: Learning local features from images. In: Bengio S, Wallach HM, Larochelle H, Grauman K, Cesa-Bianchi N, Garnett R (eds) Advances in Neural information processing systems 31: annual conference on neural information processing systems 2018, NeurIPS 2018, Montréal, Canada, pp 6237–6247. https://proceedings.neurips.cc/paper/2018/hash/f5496252609c43eb8a3d147ab9b9c006-Abstract.html. Accessed 3–8 Dec 2018

  232. Wang Q, Zhou X, Hariharan B, Snavely N (2020) Learning feature descriptors using camera pose supervision. In: Vedaldi A, Bischof H, Brox T, Frahm J (eds) Computer vision - ECCV 2020 - 16th European conference, Glasgow, UK, Proceedings, Part I. Lect Notes Comput Sci, vol 12346, pp 757–774. https://doi.org/10.1007/978-3-030-58452-8_44. Accessed 23–28 Aug 2020

  233. Qi CR, Su H, Mo K, Guibas LJ (2017) Pointnet: deep learning on point sets for 3d classification and segmentation. In: 2017 IEEE Conference on computer vision and pattern recognition, CVPR 2017, Honolulu, HI, USA, pp 77–85. https://doi.org/10.1109/CVPR.2017.16. Accessed 21–26 July 2017

  234. Qi CR, Yi L, Su H, Guibas LJ (2017) Pointnet++: deep hierarchical feature learning on point sets in a metric space. In: Guyon I, Luxburg U, Bengio S, Wallach HM, Fergus R, Vishwanathan SVN, Garnett R (eds.) Advances in Neural information processing systems 30: annual conference on neural information processing systems 2017, Long Beach, CA, USA, pp 5099–5108. https://proceedings.neurips.cc/paper/2017/hash/d8bf84be3800d12f74d8b05e9b89836f-Abstract.html. Accessed 4–9 Dec 2017

  235. Yi KM, Trulls E, Ono Y, Lepetit V, Salzmann M, Fua P (2018) Learning to find good correspondences. In: 2018 IEEE Conference on computer vision and pattern recognition, CVPR 2018, Salt Lake City, UT, USA, pp 2666–2674. https://doi.org/10.1109/CVPR.2018.00282. http://openaccess.thecvf.com/content_cvpr_2018/html/Yi_Learning_to_Find_CVPR_2018_paper.html. Accessed 18–22 June 2018

  236. Ma J, Jiang X, Jiang J, Zhao J, Guo X (2019) LMR: learning a two-class classifier for mismatch removal. IEEE Trans Image Process 28(8):4045–4059. https://doi.org/10.1109/TIP.2019.2906490

    Article  ADS  MathSciNet  PubMed  Google Scholar 

  237. Zhao C, Cao Z, Li C, Li X, Yang J (2019) Nm-net: mining reliable neighbors for robust feature correspondences. In: IEEE Conference on Computer vision and pattern recognition, CVPR 2019, Long Beach, CA, USA, pp 215–224. https://doi.org/10.1109/CVPR.2019.00030. http://openaccess.thecvf.com/content_CVPR_2019/html/Zhao_NM-Net_Mining_Reliable_Neighbors_for_Robust_Feature_Correspondences_CVPR_2019_paper.html. Accessed 16–20 June 2019

  238. Ranftl R, Koltun V (2018) Deep fundamental matrix estimation. In: Ferrari V, Hebert M, Sminchisescu C, Weiss Y (eds) Computer vision - ECCV 2018 - 15th European conference, Munich, Germany, Proceedings, Part I. Lecture Notes in Computer Science, vol 11205, pp 292–309. https://doi.org/10.1007/978-3-030-01246-5_18. https://doi.org/10.1007/978-3-030-01246-5_18. Accessed 8–14 Sept 2018

  239. Lin T, Dollár P, Girshick RB, He K, Hariharan B, Belongie SJ (2017) Feature pyramid networks for object detection. In: 2017 IEEE Conference on Computer Vision and Pattern Recognition, CVPR 2017, Honolulu, HI, USA, pp 936–944. https://doi.org/10.1109/CVPR.2017.106. Accessed 21–26 July 2017

  240. Li Z, Li E, Xu T, Samat A, Liu W (2023) Feature alignment FPN for oriented object detection in remote sensing images. IEEE Geosci Remote Sens Lett 20:1–5. https://doi.org/10.1109/LGRS.2023.3234267

    Article  Google Scholar 

  241. Li Y, Zhou S, Chen H (2022) Attention-based fusion factor in FPN for object detection. Appl Intell 52(13):15547–15556. https://doi.org/10.1007/s10489-022-03220-0

  242. Wan W, Luo X, Ma L, Xie S (2022) Side-path fpn-based multi-scale object detection. Int J Comput Sci Eng 25(1):44–51. https://doi.org/10.1504/IJCSE.2022.120787

    Article  Google Scholar 

  243. Ronneberger O, Fischer P, Brox T (2015) U-net: convolutional networks for biomedical image segmentation. In: Navab N, Hornegger J, III WMW, Frangi AF (eds) Medical image computing and computer-assisted intervention - MICCAI 2015 - 18th International Conference Munich, Germany, Proceedings, Part III. Lecture Notes in Computer Science, vol 9351, pp 234–241. https://doi.org/10.1007/978-3-319-24574-4_28. https://doi.org/10.1007/978-3-319-24574-4_28. Accessed 5–9 Oct 2015

  244. Wu Z, Guo J, Zhuang C, Xiao J, Yan D, Zhang X (2023) Joint specular highlight detection and removal in single images via unet-transformer. Comput Vis Media 9(1):141–154. https://doi.org/10.1007/s41095-022-0273-9. Accessed Oct

  245. Wang H, Cao P, Yang J, Zaïane OR (2023) Mca-unet: multi-scale cross co-attentional u-net for automatic medical image segmentation. Health Inf Sci Syst 11(1):10. https://doi.org/10.1007/s13755-022-00209-4

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  246. Cheng L, Yi J, Chen A, Zhang Y (2023) Fabric defect detection based on separate convolutional unet. Multim Tools Appl 82(2):3101–3122. https://doi.org/10.1007/s11042-022-13568-7

    Article  Google Scholar 

  247. Wang J, Hu J, Song Y, Wang Q, Zhang X, Bai S, Yi Z (2022) VMAT dose prediction in radiotherapy by using progressive refinement unet. Neurocomput 488:528–539. https://doi.org/10.1016/j.neucom.2021.11.061

    Article  Google Scholar 

  248. Yu X, Xie W, Zhang L (2023) From low to high: cascade network for restoring low-resolution face image via extracting and transforming edge feature. Multim Tools Appl 82(10):14441–14470. https://doi.org/10.1007/s11042-022-13693-3

    Article  Google Scholar 

  249. Liu Z, Tang H (2023) Learning sparse geometric features for building segmentation from low-resolution remote-sensing images. Remote Sens 15(7):1741. https://doi.org/10.3390/rs15071741

    Article  ADS  Google Scholar 

  250. Salerno, E.: Using low-resolution SAR scattering features for ship classification. IEEE Geosci Remote Sens Lett 19:1–4. https://doi.org/10.1109/LGRS.2022.3183622

  251. Xiao S, Shang K, Lin K, Wu Q, Gu H, Zhang Z (2023) Pavement crack detection with hybrid-window attentive vision transformers. Int J Appl Earth Obs Geoinforma 116:103172. https://doi.org/10.1016/j.jag.2022.103172

    Article  Google Scholar 

  252. Mormille LH, Broni-Bediako C, Atsumi M (2023) Introducing inductive bias on vision transformers through gram matrix similarity based regularization. Artif Life Robotics 28(1):106–116. https://doi.org/10.1007/s10015-022-00845-9

    Article  Google Scholar 

  253. Ding C, Teng D, Zheng X, Wang Q, He Y, Long Z (2023) DHT: dynamic vision transformer using hybrid window attention for industrial defect images classification. IEEE Instrum Meas Mag 26(2):19–28. https://doi.org/10.1109/MIM.2023.10083000

    Article  Google Scholar 

  254. Ullah W, Hussain T, Baik SW (2023) Vision transformer attention with multi-reservoir echo state network for anomaly recognition. Inf Process Manag 60(3):103289. https://doi.org/10.1016/j.ipm.2023.103289

    Article  Google Scholar 

  255. Li C, Wang G, Wang B, Liang X, Li Z, Chang X (2023) Ds-net++: dynamic weight slicing for efficient inference in cnns and vision transformers. IEEE Trans Pattern Anal Mach Intell 45(4):4430–4446. https://doi.org/10.1109/TPAMI.2022.3194044

    Article  PubMed  Google Scholar 

  256. Ding M, Qu A, Zhong H, Lai Z, Xiao S, He P (2023) An enhanced vision transformer with wavelet position embedding for histopathological image classification. Pattern Recognit 140:109532. https://doi.org/10.1016/j.patcog.2023.109532

    Article  Google Scholar 

  257. Tiong LCO, Sigmund D, Teoh ABJ (2023) Face-periocular cross-identification via contrastive hybrid attention vision transformer. IEEE Signal Process Lett 30:254–258. https://doi.org/10.1109/LSP.2023.3256320

    Article  Google Scholar 

  258. Liu X, Wei W, Liu C, Peng Y, Huang J, Li J (2023) Real-time monocular depth estimation merging vision transformers on edge devices for aiot. IEEE Trans Instrum Meas 72:1–9. https://doi.org/10.1109/TIM.2023.3264039

    Article  Google Scholar 

  259. Tian Y, Meng H, Yuan F, Ling Y, Yuan N (2023) Vision transformer with enhanced self-attention for few-shot ship target recognition in complex environments. IEEE Trans Instrum Meas 72:1–12. https://doi.org/10.1109/TIM.2023.3268455

    Article  Google Scholar 

  260. Wang H, Chen J, Huang Z, Li B, Lv J, Xi J, Wu B, Zhang J, Wu Z (2023) FPT: fine-grained detection of driver distraction based on the feature pyramid vision transformer. IEEE Trans Intell Transp Syst 24(2):1594–1608. https://doi.org/10.1109/TITS.2022.3219676

    Article  Google Scholar 

  261. Bökman G, Kahl F (2022) A case for using rotation invariant features in state of the art feature matchers. In: IEEE/CVF Conference on computer vision and pattern recognition workshops, CVPR Workshops 2022, New Orleans, LA, USA, pp 5106–5115. https://doi.org/10.1109/CVPRW56347.2022.00559. Accessed 19–20 June 2022

  262. Tang S, Zhang J, Zhu S, Tan P (2022) Quadtree attention for vision transformers. In: The tenth international conference on learning representations, ICLR 2022, Virtual Event. https://openreview.net/forum?id=fR-EnKWL_Zb. Accessed 25–29 April 2022

  263. Wang Q, Zhang J, Yang K, Peng K, Stiefelhagen R (2022) Matchformer: interleaving attention in transformers for feature matching. In: Wang L, Gall J, Chin T, Sato I, Chellappa R (eds) Computer vision - ACCV 2022 - 16th Asian conference on computer vision, Macao, China, Proceedings, Part III. Lect Notes Comput Sci, vol 13843, pp 256–273. https://doi.org/10.1007/978-3-031-26313-2_16. https://doi.org/10.1007/978-3-031-26313-2_16. Accessed 4–8 Dec 2022

  264. Xue X, Tsai P, Chen J (2022) Large-scale complex ontology matching through anchor-based semantic partitioning technique and confidence matrix based evolutionary algorithm. Appl Soft Comput 128:109516. https://doi.org/10.1016/j.asoc.2022.109516

    Article  Google Scholar 

  265. Chai T, Goi B, Yap W (2021) Towards better performance for protected iris biometric system with confidence matrix. Symmetry 13(5):910. https://doi.org/10.3390/sym13050910

    Article  ADS  Google Scholar 

  266. Xu L, Liu H, Song E, Jin R, Hung C (2019) Automatic brain tissue segmentation in MR images using hybrid atlas forest based on confidence-weighted probability matrix. Int J Imaging Syst Technol 29(2):97–109. https://doi.org/10.1002/ima.22301

    Article  Google Scholar 

  267. Norinder U, Svensson F (2019) Multitask modeling with confidence using matrix factorization and conformal prediction. J Chem Inf Model 59(4):1598–1604. https://doi.org/10.1021/acs.jcim.9b00027

    Article  CAS  PubMed  Google Scholar 

  268. Xia D (2019) Confidence region of singular subspaces for low-rank matrix regression. IEEE Trans Inf Theory 65(11):7437–7459. https://doi.org/10.1109/TIT.2019.2924900

    Article  MathSciNet  Google Scholar 

  269. Myers MK, Wright N, McGough AS, Martin NG (2023) Hand guided high resolution feature enhancement for fine-grained atomic action segmentation within complex human assemblies. In: IEEE/CVF Winter conference on applications of computer vision workshops, WACV 2023 - Workshops, Waikoloa, HI, USA, pp 1–10. https://doi.org/10.1109/WACVW58289.2023.00052. Accessed 3–7 Jan 2023

  270. Wang P (2022) Spatial texture feature classification algorithm for high resolution 3d images. Int J Inf Commun Technol 21(3):229–240. https://doi.org/10.1504/IJICT.2021.10036872

    Article  CAS  Google Scholar 

  271. Chaib S, Mansouri DEK, Omara I, Hagag A, Dhelim S, Bensaber DA (2022) On the co-selection of vision transformer features and images for very high-resolution image scene classification. Remote Sens 14(22):5817. https://doi.org/10.3390/rs14225817

    Article  ADS  Google Scholar 

  272. Ozdemir C, Hoover RC, Caudle KA (2021) Fast tensor singular value decomposition using the low-resolution features of tensors. In: Wani MA, Sethi IK, Shi W, Qu G, Raicu DS, Jin R (eds.) 20th IEEE Int Conf Mach Learning Appl, ICMLA 2021, Pasadena, CA, USA, pp 527–533. https://doi.org/10.1109/ICMLA52953.2021.00088. Accessed 13–16 Dec 2021

  273. Shakeel MS, Lam K, Lai S (2019) Learning sparse discriminant low-rank features for low-resolution face recognition. J Vis Commun Image Represent 63. https://doi.org/10.1016/j.jvcir.2019.102590

  274. Yuan Y, Li J, Li Y, Gou J, Qiang J, Sun Q (2019) Learning super-resolution coherent facial features using nonlinear multiset PLS for low-resolution face recognition. In: 2019 IEEE International conference on image processing, ICIP 2019, Taipei, Taiwan, pp 3871–3875. https://doi.org/10.1109/ICIP.2019.8803595. Accessed 22–25 Sept 2019

  275. Chen H, Zhao X, Sun S, Tan M (2017) PLS-CCA heterogeneous features fusion-based low-resolution human detection method for outdoor video surveillance. Int J Autom Comput 14(2):136–146. https://doi.org/10.1007/s11633-016-1029-8

    Article  Google Scholar 

  276. Liu Y, Guo J, Chang C (2014) Low resolution pedestrian detection using light robust features and hierarchical system. Pattern Recognit 47(4):1616–1625. https://doi.org/10.1016/j.patcog.2013.11.008

    Article  ADS  Google Scholar 

  277. Bei W, Fan X, Jian H, Du X, Yan D (2023) Geoglue: feature matching with self-supervised geometric priors for high-resolution UAV images. Int J Digit Earth 16(1):1246–1275. https://doi.org/10.1080/17538947.2023.2197260

    Article  Google Scholar 

  278. Cao Y, Sui B, Zhang S, Qin H (2023) Cloud detection from high-resolution remote sensing images based on convolutional neural networks with geographic features and contextual information. IEEE Geosci Remote Sens Lett 20:1–5. https://doi.org/10.1109/LGRS.2023.3251364

    Article  Google Scholar 

  279. Shen X, Guo Y, Cao J (2023) Object-based multiscale segmentation incorporating texture and edge features of high-resolution remote sensing images. PeerJ Comput Sci 9:1290. https://doi.org/10.7717/peerj-cs.1290

    Article  Google Scholar 

  280. Sun L, Zou H, Wei J, Cao X, He S, Li M, Liu S (2023) Semantic segmentation of high-resolution remote sensing images based on sparse self-attention and feature alignment. Remote Sens 15(6):1598. https://doi.org/10.3390/rs15061598

    Article  ADS  Google Scholar 

  281. Zhao Y, Chen P, Chen Z, Bai Y, Zhao Z, Yang X (2023) A triple-stream network with cross-stage feature fusion for high-resolution image change detection. IEEE Trans Geosci Remote Sens 61:1–17. https://doi.org/10.1109/TGRS.2022.3233849

    Article  CAS  Google Scholar 

  282. Giang KT, Song S, Jo S (2022) Topicfm: robust and interpretable feature matching with topic-assisted. https://doi.org/10.48550/arXiv.2207.00328

  283. Chen S, Li X, Wang Z, Prisacariu VA (2022) Dfnet: enhance absolute pose regression with direct feature matching. In: Avidan S, Brostow GJ, Cissé M, Farinella GM, Hassner T (eds) Computer Vision - ECCV 2022 - 17th European Conference, Tel Aviv, Israel, Proceedings, Part X. Lecture Notes in Computer Science, vol. 13670, pp 1–17. https://doi.org/10.1007/978-3-031-20080-9_1. Accessed 23–27 Oct 2022

  284. Chu Y, Li H, Li X, Ding Y, Yang X, Ai D, Chen X, Wang Y, Yang J (2020) Endoscopic image feature matching via motion consensus and global bilateral regression. Comput Methods Programs Biomed 190:105370. https://doi.org/10.1016/j.cmpb.2020.105370

    Article  PubMed  Google Scholar 

  285. Aguilera CA, Barrera F, Lumbreras F, Sappa AD, Toledo R (2012) Multispectral image feature points. Sensors 12(9):12661–12672. https://doi.org/10.3390/s120912661

    Article  Google Scholar 

  286. Nunes CFG, Pádua FLC (2017) A local feature descriptor based on log-gabor filters for keypoint matching in multispectral images. IEEE Geosci Remote Sens Lett 14(10):1850–1854. https://doi.org/10.1109/LGRS.2017.2738632

    Article  ADS  Google Scholar 

  287. Huang D, Tang Y, Wang Y, Chen L, Wang Y (2012) Hand vein recognition based on oriented gradient maps and local feature matching. In: Lee KM, Matsushita Y, Rehg JM, Hu Z (eds) Computer vision - ACCV 2012, 11th Asian conference on computer vision, Daejeon, Korea, Revised Selected Papers, Part IV. Lecture Notes in Computer Science 7727:430–444. https://doi.org/10.1007/978-3-642-37447-0_33. Accessed 5–9 Nov 2012

  288. Wang G, Liu Q (2015) Far-infrared based pedestrian detection for driver-assistance systems based on candidate filters, gradient-based feature and multi-frame approval matching. Sensors 15(12):32188–32212. https://doi.org/10.3390/s151229874

    Article  ADS  PubMed  PubMed Central  Google Scholar 

  289. Dhamecha TI, Sharma P, Singh R, Vatsa M (2014) On effectiveness of histogram of oriented gradient features for visible to near infrared face matching. In: 22nd International conference on pattern recognition, ICPR 2014, Stockholm, Sweden, pp 1788–1793. https://doi.org/10.1109/ICPR.2014.314. Accessed 24–28 Aug 2014

  290. Alex AT, Asari VK, Mathew A (2012) Gradient feature matching for expression invariant face recognition using single reference image. In: Proceedings of the IEEE international conference on systems, man, and cybernetics, SMC 2012, Seoul, Korea (South), pp 851–856. https://doi.org/10.1109/ICSMC.2012.6377834. Accessed 14–17 Oct 2012

  291. Si Y, Wang W, Zheng Z, Zhang X (2019) A fast and robust template matching method with rotated gradient features and image pyramid. In: Yu H, Liu J, Liu L, Ju Z, Liu Y, Zhou D (eds) Intelligent robotics and applications - 12th international conference, ICIRA 2019, Shenyang, China, Proceedings, Part IV. Lect Notes Comput Sci 11743:505–516. https://doi.org/10.1007/978-3-030-27538-9_43

  292. Liu X, Li J, Pan J, Wang S (2021) An advanced gradient texture feature descriptor based on phase information for infrared and visible image matching. Multim Tools Appl 80(11):16491–16511. https://doi.org/10.1007/s11042-020-10213-z

    Article  Google Scholar 

  293. Bay H, Tuytelaars T, Gool LV (2006) SURF: speeded up robust features. In: Leonardis A, Bischof H, Pinz A (eds) Computer vision - ECCV 2006, 9th European conference on computer vision, Graz, Austria, Proceedings, Part I. Lecture Notes in Computer Science, 3951: 404–417. https://doi.org/10.1007/11744023_32. Accessed 7–13 May 2006

  294. Bay H, Ess A, Tuytelaars T, Gool LV (2008) Speeded-up robust features (SURF). Comput Vis Image Underst 110(3):346–359. https://doi.org/10.1016/j.cviu.2007.09.014

    Article  Google Scholar 

  295. Saleem S, Sablatnig R (2014) A robust SIFT descriptor for multispectral images. IEEE Signal Process Lett 21(4):400–403. https://doi.org/10.1109/LSP.2014.2304073

    Article  ADS  Google Scholar 

  296. Wang G, Wang Z, Chen Y, Zhao W (2015) Robust point matching method for multimodal retinal image registration. Biomed Signal Process Control 19:68–76. https://doi.org/10.1016/j.bspc.2015.03.004

    Article  ADS  Google Scholar 

  297. Ke Y, Sukthankar R (2004) PCA-SIFT: a more distinctive representation for local image descriptors. In: 2004 IEEE Computer society conference on computer vision and pattern recognition (CVPR 2004), with CD-ROM, 27 June - 2 July 2004, Washington, DC, USA, pp 506–513. https://doi.org/10.1109/CVPR.2004.183

  298. Weng D, Wang Y, Gong M, Tao D, Wei H (2015) Huang D (2004) DERF: distinctive efficient robust features from the biological modeling of the P ganglion cells. IEEE Trans Image Process 24(8):2287–2302. https://doi.org/10.1109/TIP.2015.2409739

    Article  ADS  MathSciNet  PubMed  Google Scholar 

  299. Cui C, Ngan KN (2011) Scale- and affine-invariant fan feature. IEEE Trans Image Process 20(6):1627–1640. https://doi.org/10.1109/TIP.2010.2103948

    Article  ADS  MathSciNet  PubMed  Google Scholar 

  300. Dalal N, Triggs B (2005) Histograms of oriented gradients for human detection. In: 2005 IEEE Computer society conference on computer vision and pattern recognition (CVPR 2005), San Diego, CA, USA, pp. 886–893. https://doi.org/10.1109/CVPR.2005.177. Accessed 20–26 June 2005

  301. Huang D, Zhu C, Wang Y, Chen L (2014) HSOG: a novel local image descriptor based on histograms of the second-order gradients. IEEE Trans Image Process 23(11):4680–4695. https://doi.org/10.1109/TIP.2014.2353814

    Article  ADS  MathSciNet  PubMed  Google Scholar 

  302. Ye Y, Shan J, Bruzzone L, Shen L (2017) Robust registration of multimodal remote sensing images based on structural similarity. IEEE Trans Geosci Remote Sens 55(5):2941–2958. https://doi.org/10.1109/TGRS.2017.2656380

    Article  ADS  Google Scholar 

  303. Li J, Hu Q, Ai M (2020) RIFT: multi-modal image matching based on radiation-variation insensitive feature transform. IEEE Trans Image Process 29:3296–3310. https://doi.org/10.1109/TIP.2019.2959244

    Article  ADS  Google Scholar 

  304. Dawood H, Dawood H, Guo P (2013) Global matching to enhance the strength of local intensity order pattern feature descriptor. In: Guo C, Hou Z, Zeng Z (eds) Advances in neural networks - ISNN 2013 - 10th international symposium on neural networks, Dalian, China, Proceedings, Part I. Lect Notes Comput Sci 7951:497–504. https://doi.org/10.1007/978-3-642-39065-4_60. Accessed 4–6 July 2013

  305. Aguilera CA, Sappa AD, Toledo R (2015) LGHD: a feature descriptor for matching across non-linear intensity variations. In: 2015 IEEE International conference on image processing, ICIP 2015, Quebec City, QC, Canada, pp 178–181. https://doi.org/10.1109/ICIP.2015.7350783. Accessed 27–30 Sept 2015

  306. Menon HP (2017) Issues involved in automatic selection and intensity based matching of feature points for mls registration of medical images. In: 2017 International conference on advances in computing, communications and informatics, ICACCI 2017, Udupi (Near Mangalore), India, pp 787–792. https://doi.org/10.1109/ICACCI.2017.8125938. Accessed 13–16 Sept 2017

  307. Zhu D, Semba S, Yang H (2021) Matching intensity for image visibility graphs: a new method to extract image features. IEEE Access 9:12611–12621. https://doi.org/10.1109/ACCESS.2021.3050747

    Article  Google Scholar 

  308. Chen J, Tian J, Lee N, Zheng J, Smith RT, Laine AF (2010) A partial intensity invariant feature descriptor for multimodal retinal image registration. IEEE Trans Biomed Eng 57(7):1707–1718. https://doi.org/10.1109/TBME.2010.2042169

    Article  PubMed  PubMed Central  Google Scholar 

  309. Calonder M, Lepetit V, Strecha C, Fua P (2010) BRIEF: binary robust independent elementary features. In: Daniilidis K, Maragos P, Paragios N (eds) Computer vision - ECCV 2010, 11th European conference on computer vision, Heraklion, Crete, Greece, Proceedings, Part IV. Lecture Notes in Computer Science, 6314:778–792. https://doi.org/10.1007/978-3-642-15561-1_56. Accessed 5–11 Sept 2010

  310. Rublee E, Rabaud V, Konolige K, Bradski GR (2011) ORB: an efficient alternative to SIFT or SURF. In: Metaxas DN, Quan L, Sanfeliu A, Gool LV (eds) IEEE International conference on computer vision, ICCV 2011, Barcelona, Spain, pp 2564–2571. https://doi.org/10.1109/ICCV.2011.6126544. Accessed 6–13 Nov 2011

  311. Dubey SR, Singh SK, Singh RK (2014) Rotation and illumination invariant interleaved intensity order-based local descriptor. IEEE Trans Image Process 23(12):5323–5333. https://doi.org/10.1109/TIP.2014.2358879

    Article  ADS  MathSciNet  PubMed  Google Scholar 

  312. Nie Z, Li C, Liu H, Yang X (2021) A variational model for deformable registration of uni-modal medical images with intensity biases. J Math Imaging Vis 63(8):1057–1068. https://doi.org/10.1007/s10851-021-01042-2

    Article  MathSciNet  Google Scholar 

  313. Li J, Xu W, Shi P, Zhang Y, Hu Q (2022) LNIFT: locally normalized image for rotation invariant multimodal feature matching. IEEE Trans Geosci Remote Sens 60:1–14. https://doi.org/10.1109/TGRS.2022.3165940

    Article  Google Scholar 

  314. Gadde P, Yu X (2016) Image registration with artificial neural networks using spatial and frequency features. In: 2016 International joint conference on neural networks, IJCNN 2016, Vancouver, BC, Canada, pp 4643–4649. https://doi.org/10.1109/IJCNN.2016.7727809. Accessed 24–29 July 2016

  315. Huang J, An D, Luo Y, Chen J, Zhou Z, Chen L, Feng D (2022) A registration method for dual-frequency, high-spatial-resolution SAR images. Remote Sens 14(10):2509. https://doi.org/10.3390/rs14102509

    Article  ADS  Google Scholar 

  316. Murphy JM, Le Moigne J, Harding DJ (2015) Automatic image registration of multimodal remotely sensed data with global shearlet features. IEEE Trans Geosci Remote Sens 54(3):1685–1704

    Article  ADS  PubMed  PubMed Central  Google Scholar 

  317. Pan W, Qin K, Chen Y (2008) An adaptable-multilayer fractional fourier transform approach for image registration. IEEE Trans Pattern Anal Mach Intell 31(3):400–414

    Article  Google Scholar 

  318. Song T, Li H (2013) Local polar DCT features for image description. IEEE Signal Process Lett 20(1):59–62. https://doi.org/10.1109/LSP.2012.2229273

    Article  ADS  MathSciNet  Google Scholar 

  319. Liu Z, Ho Y, Tsukada K, Hanasaki K, Dai Y, Li L (2002) Using multiple orientational filters of steerable pyramid for image registration. Inf Fusion 3(3):203–214. https://doi.org/10.1016/S1566-2535(02)00073-8

    Article  Google Scholar 

  320. Matsakis P, Keller JM, Sjahputera O, Marjamaa J (2004) The use of force histograms for affine-invariant relative position description. IEEE Trans Pattern Anal Mach Intell 26(1):1–18. https://doi.org/10.1109/TPAMI.2004.10008

    Article  PubMed  Google Scholar 

  321. Litman R, Bronstein AM (2014) Learning spectral descriptors for deformable shape correspondence. IEEE Trans Pattern Anal Mach Intell 36(1):171–180. https://doi.org/10.1109/TPAMI.2013.148

    Article  CAS  PubMed  Google Scholar 

  322. Wang B, Brown D, Gao Y, Salle JL (2015) MARCH: multiscale-arch-height description for mobile retrieval of leaf images. Inf Sci 302:132–148. https://doi.org/10.1016/j.ins.2014.07.028

    Article  Google Scholar 

  323. Hong B, Soatto S (2015) Shape matching using multiscale integral invariants. IEEE Trans Pattern Anal Mach Intell 37(1):151–160. https://doi.org/10.1109/TPAMI.2014.2342215

    Article  PubMed  Google Scholar 

  324. Chen Z, Sun S (2010) A zernike moment phase-based descriptor for local image representation and matching. IEEE Trans Image Process 19(1):205–219. https://doi.org/10.1109/TIP.2009.2032890

    Article  ADS  MathSciNet  PubMed  Google Scholar 

  325. Fathima AA, Karthik R, Vaidehi V (2013) Image stitching with combined moment invariants and sift features. In: Shakshuki EM, Djouani K, Sheng M, Younis MF, Vaz E, Groszko W (eds) Proceedings of the 4th international conference on ambient systems, networks and technologies (ANT 2013), the 3rd international conference on sustainable energy information technology (SEIT-2013), Halifax, Nova Scotia, Canada. Procedia Computer Science, 19:420–427. https://doi.org/10.1016/j.procs.2013.06.057. Accessed 25–28 June 2013

  326. Marín D, Aquino A, Gegúndez-Arias ME, Bravo JM (2011) A new supervised method for blood vessel segmentation in retinal images by using gray-level and moment invariants-based features. IEEE Trans Medical Imaging 30(1):146–158. https://doi.org/10.1109/TMI.2010.2064333

    Article  PubMed  Google Scholar 

  327. Ong L, Lau S, Koo VC (2014) A new approach of local feature descriptors using moment invariants. J Comput Sci 10(12):2538–2547. https://doi.org/10.3844/jcssp.2014.2538.2547

    Article  Google Scholar 

  328. Karakasis EG, Amanatiadis A, Gasteratos A, Chatzichristofis SA (2015) Image moment invariants as local features for content based image retrieval using the bag-of-visual-words model. Pattern Recognit Lett 55:22–27. https://doi.org/10.1016/j.patrec.2015.01.005

    Article  ADS  Google Scholar 

  329. Kushol R, Salekin MS, Kabir MH, Khan AA (2016) Copy-move forgery detection using color space and moment invariants-based features. In: 2016 International conference on digital image computing: techniques and applications, DICTA 2016, Gold Coast, Australia, November 30 - December 2, 2016, pp 1–6. https://doi.org/10.1109/DICTA.2016.7797027

  330. Zita A, Flusser J, Suk T, Kotera J (2017) Feature selection on affine moment invariants in relation to known dependencies. In: Felsberg M, Heyden A, Krüger N (eds) Computer analysis of images and patterns - 17th international conference, CAIP 2017, Ystad, Sweden. Proceedings, Part II. Lecture Notes in Computer Science, 10425:285–295. https://doi.org/10.1007/978-3-319-64698-5_24. Accessed 22–24 Aug 2017

  331. Elouariachi I, Benouini R, Zenkouar K, Zarghili A, Fadili H (2022) RGB-D feature extraction method for hand gesture recognition based on a new fast and accurate multi-channel cartesian jacobi moment invariants. Multim. Tools Appl 81(9):12725–12757. https://doi.org/10.1007/s11042-022-12161-2

    Article  Google Scholar 

  332. Majumdar J, Awale M, Santhosh KLK (2018) Video shot detection based on SIFT features and video summarization using expectation-maximization. In: 2018 International conference on advances in computing, communications and informatics, ICACCI 2018, Bangalore, India, pp 1033–1037. https://doi.org/10.1109/ICACCI.2018.8554662. Accessed 19–22 Sept 2018

  333. Li H, Hua G (2018) Probabilistic elastic part model: a pose-invariant representation for real-world face verification. IEEE Trans Pattern Anal Mach Intell 40(4):918–930. https://doi.org/10.1109/TPAMI.2017.2695183

    Article  PubMed  Google Scholar 

  334. Lawin FJ, Danelljan M, Khan FS, Forssén P, Felsberg M (2018) Density adaptive point set registration. In: 2018 IEEE Conference on computer vision and pattern recognition, CVPR 2018, Salt Lake City, UT, USA, pp 3829–3837. https://doi.org/10.1109/CVPR.2018.00403. Accessed 18–22 June 2018

  335. Di Y, Zhu X, Jin X, Dou Q, Zhou W, Duan Q (2021) Color-unet++: a resolution for colorization of grayscale images using improved unet++. Multim Tools Appl 80(28–29):35629–35648. https://doi.org/10.1007/s11042-021-10830-2

    Article  Google Scholar 

  336. Mishra A (2019) DHFML: deep heterogeneous feature metric learning for matching photograph and cartoon pairs. Int J Multim Inf Retr 8(3):135–142. https://doi.org/10.1007/s13735-018-0160-4

    Article  Google Scholar 

  337. Agarwal R, Verma OP (2020) An efficient copy move forgery detection using deep learning feature extraction and matching algorithm. Multim Tools Appl 79(11–12):7355–7376. https://doi.org/10.1007/s11042-019-08495-z

    Article  Google Scholar 

  338. He J, Huang Z, Wang N, Zhang Z (2021) Learnable graph matching: Incorporating graph partitioning with deep feature learning for multiple object tracking. In: IEEE Conference on computer vision and pattern recognition, CVPR 2021, Virtual, pp 5299–5309. https://doi.org/10.1109/CVPR46437.2021.00526. Accessed 19–25 June 2021

  339. Li H (2021) Feature extraction, recognition, and matching of damaged fingerprint: application of deep learning network. Concurr Comput Pract Exp 33(6). https://doi.org/10.1002/cpe.6057

  340. Abbasi JS, Bashir F, Qureshi KN, Najam-ul-Islam M, Jeon G (2021) Deep learning-based feature extraction and optimizing pattern matching for intrusion detection using finite state machine. Comput Electr Eng 92:107094. https://doi.org/10.1016/j.compeleceng.2021.107094

    Article  Google Scholar 

  341. Dinh VQ, Nguyen PH, Nguyen VD (2022) Feature engineering and deep learning for stereo matching under adverse driving conditions. IEEE Trans Intell Transp Syst 23(7):7855–7865. https://doi.org/10.1109/TITS.2021.3073557

    Article  Google Scholar 

  342. Chen J, Chen S, Chen X, Yang Y, Xing L, Fan X, Rao Y (2022) Lsv-anet: deep learning on local structure visualization for feature matching. IEEE Trans Geosci Remote Sens 60:1–18. https://doi.org/10.1109/TGRS.2021.3062498

    Article  CAS  Google Scholar 

  343. Yin C, Zhi H, Li H (2022) Dense feature learning and compact cost aggregation for deep stereo matching. IEEE Access 10:100999–101010. https://doi.org/10.1109/ACCESS.2022.3208368

    Article  Google Scholar 

  344. Ha IY, Heinrich MP (2021) Modality-agnostic self-supervised deep feature learning and fast instance optimisation for multimodal fusion in ultrasound-guided interventions. Comput Methods Programs Biomed 211:106374. https://doi.org/10.1016/j.cmpb.2021.106374

    Article  PubMed  Google Scholar 

  345. Ki M, Uh Y, Lee W, Byun H (2021) Contrastive and consistent feature learning for weakly supervised object localization and semantic segmentation. Neurocomputing 445:244–254. https://doi.org/10.1016/j.neucom.2021.03.023

    Article  Google Scholar 

  346. Lin J, Zhan Y, Zhao W (2021) Instance search based on weakly supervised feature learning. Neurocomputing 424:117–124. https://doi.org/10.1016/j.neucom.2019.11.029

    Article  Google Scholar 

  347. Li J, Xie H, Li J, Wang Z, Zhang Y (2021) Frequency-aware discriminative feature learning supervised by single-center loss for face forgery detection. In: IEEE Conference on computer vision and pattern recognition, CVPR 2021, Virtual, pp 6458–6467. https://doi.org/10.1109/CVPR46437.2021.00639. https://openaccess.thecvf.com/content/CVPR2021/html/Li_Frequency-Aware_Discriminative_Feature_Learning_Supervised_by_Single-Center_Loss_for_Face_CVPR_2021_paper.html. Accessed 19–25 June 2021

  348. Pargent F, Pfisterer F, Thomas J, Bischl B (2022) Regularized target encoding outperforms traditional methods in supervised machine learning with high cardinality features. Comput Stat 37(5):2671–2692. https://doi.org/10.1007/s00180-022-01207-6

    Article  MathSciNet  Google Scholar 

  349. Awawdeh S, Faris H, Hiary H (2022) Evoimputer: an evolutionary approach for missing data imputation and feature selection in the context of supervised learning. Knowl Based Syst 236:107734. https://doi.org/10.1016/j.knosys.2021.107734

    Article  Google Scholar 

  350. Abid MA, Ullah S, Siddique MA, Mushtaq MF, Aljedaani W, Rustam F (2022) Spam SMS filtering based on text features and supervised machine learning techniques. Multim Tools Appl 81(28):39853–39871. https://doi.org/10.1007/s11042-022-12991-0

    Article  Google Scholar 

  351. Ambika K, Radhika KR (2023) Model-free supervised learning-based gait authentication scheme based on optimized gabor features. Soft Comput 27(8):5053–5062. https://doi.org/10.1007/s00500-023-08029-8

    Article  Google Scholar 

  352. Chen Y, Barfoot TD (2023) Self-supervised feature learning for long-term metric visual localization. IEEE Robotics Autom Lett 8(2):472–479. https://doi.org/10.1109/LRA.2022.3227866

    Article  Google Scholar 

  353. Cao X, Li C, Feng J, Jiao L (2023) Semi-supervised feature learning for disjoint hyperspectral imagery classification. Neurocomputing 526:9–18. https://doi.org/10.1016/j.neucom.2023.01.054

    Article  Google Scholar 

  354. Qiu W, Pan Z, Yang J (2023) Few-shot polsar ship detection based on polarimetric features selection and improved contrastive self-supervised learning. Remote Sens 15(7):1874. https://doi.org/10.3390/rs15071874

    Article  ADS  Google Scholar 

  355. Xie T, Yang Y, Ding Z, Cheng X, Wang X, Gong H, Liu M (2023) Self-supervised feature enhancement: applying internal pretext task to supervised learning. IEEE Access 11:1708–1717. https://doi.org/10.1109/ACCESS.2022.3233104

    Article  Google Scholar 

  356. Dong Y, Jiao W, Long T, Liu L, He G, Gong C, Guo Y (2019) Local deep descriptor for remote sensing image feature matching. Remote Sens 11(4):430. https://doi.org/10.3390/rs11040430

    Article  ADS  Google Scholar 

  357. Salehi M, Sadr AV, Mahdavi SR, Arabi H, Shiri I, Reiazi R (2023) Deep learning-based non-rigid image registration for high-dose rate brachytherapy in inter-fraction cervical cancer. J Digit Imaging 36(2):574–587. https://doi.org/10.1007/s10278-022-00732-6

    Article  PubMed  Google Scholar 

  358. Zakeri A, Hokmabadi A, Bi N, Wijesinghe I, Nix MG, Petersen SE, Frangi AF, Taylor ZA, Gooya A (2023) Dragnet: learning-based deformable registration for realistic cardiac MR sequence generation from a single frame. Medical Image Anal 83:102678. https://doi.org/10.1016/j.media.2022.102678

    Article  Google Scholar 

  359. Hernandez KAL, Rienmüller T, Juárez IA, Riz MAP, Reyna F, Baumgartner D, Makarenko VN, Bockeria OL, Maksudov MF, Rienmüller R, Baumgartner C (2023) Deep learning-based image registration in dynamic myocardial perfusion CT imaging. IEEE Trans Medical Imaging 42(3):684–696. https://doi.org/10.1109/TMI.2022.3214380

    Article  Google Scholar 

  360. Zheng Z, Cao W, Duan Y, Cao G, Lian D (2022) Multi-strategy mutual learning network for deformable medical image registration. Neurocomputing 501:102–112. https://doi.org/10.1016/j.neucom.2022.06.020

    Article  Google Scholar 

  361. Li L, Han L, Ding M, Liu Z, Cao H (2022) Remote sensing image registration based on deep learning regression model. IEEE Geosci Remote Sens Lett 19:1–5. https://doi.org/10.1109/LGRS.2020.3032439

    Article  CAS  Google Scholar 

  362. Rozsypálek Z, Broughton G, Linder P, Roucek T, Blaha J, Mentzl L, Kusumam K, Krajník T (2022) Contrastive learning for image registration in visual teach and repeat navigation. Sensors. 22(8):2975. https://doi.org/10.3390/s22082975

    Article  ADS  PubMed  PubMed Central  Google Scholar 

  363. Grzech D, Azampour MF, Glocker B, Schnabel JA, Navab N, Kainz B, Folgoc LL (2022) A variational bayesian method for similarity learning in non-rigid image registration. In: IEEE/CVF Conference on computer vision and pattern recognition, CVPR 2022, New Orleans, LA, USA, pp 119–128. https://doi.org/10.1109/CVPR52688.2022.00022. Accessed 18–24 June 2022

  364. Wang J, Wang P, Li B, Gao Y, Zhao S (2022) A learning-based optimization algorithm: image registration optimizer network. IEEE Geosci Remote Sens Lett 19:1–5. https://doi.org/10.1109/LGRS.2021.3062334

    Article  CAS  Google Scholar 

  365. Lee E, Plishker W, Hata N, Shyn PB, Silverman SG, Bhattacharyya SS, Shekhar R (2021) Rapid quality assessment of nonrigid image registration based on supervised learning. J Digit Imaging 34(6):1376–1386. https://doi.org/10.1007/s10278-021-00523-5

    Article  PubMed  PubMed Central  Google Scholar 

  366. Hu J, Luo Z, Wang X, Sun S, Yin Y, Cao K, Song Q, Lyu S, Wu X (2021) End-to-end multimodal image registration via reinforcement learning. Medical Image Anal 68:101878. https://doi.org/10.1016/j.media.2020.101878

    Article  Google Scholar 

  367. Li J, Gao M, Li B, Zhou D, Zhi Y, Zhang Y (2023) Kamtfenet: a fall detection algorithm based on keypoint attention module and temporal feature extraction. Int J Mach Learn Cybern 14(5):1831–1844. https://doi.org/10.1007/s13042-022-01730-4

    Article  Google Scholar 

  368. Liu J, Sun K, Jiang S, Li K, Tao W (2023) MSSF: a novel mutual structure shift feature for removing incorrect keypoint correspondences between images. Remote Sens 15(4):926. https://doi.org/10.3390/rs15040926

    Article  ADS  CAS  Google Scholar 

  369. Sunitha K, N KA, Prasad BG, (2022) Copy-move tampering detection using keypoint based hybrid feature extraction and improved transformation model. Appl Intell 52(13):15405–15416. https://doi.org/10.1007/s10489-022-03207-x

  370. Li X, Zhang Y, Kong D (2022) E\(^{2}\)-pv-rcnn: improving 3d object detection via enhancing keypoint features. Multim Tools Appl 81(25):35843–35874. https://doi.org/10.1007/s11042-021-11660-y

    Article  Google Scholar 

  371. Yuan Y, Cheng H, Sester M (2022) Keypoints-based deep feature fusion for cooperative vehicle detection of autonomous driving. IEEE Robotics Autom Lett 7(2):3054–3061. https://doi.org/10.1109/LRA.2022.3143299

    Article  Google Scholar 

  372. Tian Y, Yu X, Fan B, Wu F, Heijnen H, Balntas V (2019) Sosnet: Second order similarity regularization for local descriptor learning. In: IEEE Conference on computer vision and pattern recognition, CVPR 2019, Long Beach, CA, USA, June 16-20, pp 11016–11025 (2019). https://doi.org/10.1109/CVPR.2019.01127. http://openaccess.thecvf.com/content_CVPR_2019/html/Tian_SOSNet_Second_Order_Similarity_Regularization_for_Local_Descriptor_Learning_CVPR_2019_paper.html

  373. Tian Y, Laguna AB, Ng T, Balntas V, Mikolajczyk K (2020) Hynet: Learning local descriptor with hybrid similarity measure and triplet loss. In: Larochelle H, Ranzato M, Hadsell R, Balcan M, Lin H (eds) Advances in neural information processing systems 33: annual conference on neural information processing systems 2020, NeurIPS 2020, Virtual. https://proceedings.neurips.cc/paper/2020/hash/52d2752b150f9c35ccb6869cbf074e48-Abstract.html. Accessed 6–12 Dec 2020

  374. Liao Y, Di Y, Zhou H, Li A, Liu J, Lu M, Duan Q (2022) Feature matching and position matching between optical and SAR with local deep feature descriptor. IEEE J Sel Top Appl Earth Obs Remote Sens 15:448–462. https://doi.org/10.1109/JSTARS.2021.3134676

    Article  ADS  Google Scholar 

  375. Deng J, Guo J, Yang J, Xue N, Kotsia I, Zafeiriou S (2022) Arcface: additive angular margin loss for deep face recognition. IEEE Trans Pattern Anal Mach Intell 44(10):5962–5979. https://doi.org/10.1109/TPAMI.2021.3087709

    Article  PubMed  Google Scholar 

  376. Laguna AB, Mikolajczyk K (2023) Key.net: keypoint detection by handcrafted and learned CNN filters revisited. IEEE Trans Pattern Anal Mach Intell 45(1):698–711. https://doi.org/10.1109/TPAMI.2022.3145820

  377. Dusmanu M, Rocco I, Pajdla T, Pollefeys M, Sivic J, Torii A, Sattler T (2019) D2-net: A trainable CNN for joint description and detection of local features. In: IEEE Conference on computer vision and pattern recognition, CVPR 2019, Long Beach, CA, USA, pp 8092–8101. https://doi.org/10.1109/CVPR.2019.00828. http://openaccess.thecvf.com/content_CVPR_2019/html/Dusmanu_D2-Net_A_Trainable_CNN_for_Joint_Description_and_Detection_of_CVPR_2019_paper.html. Accessed 16–20 June 2019

  378. Tian Y, Balntas V, Ng T, Laguna AB, Demiris Y, Mikolajczyk K (2020) D2D: keypoint extraction with describe to detect approach. In: Ishikawa H, Liu C, Pajdla T, Shi J (eds) Computer Vision - ACCV 2020 - 15th Asian Conference on Computer Vision, Kyoto, Japan, November 30 - December 4, 2020, Revised Selected Papers, Part III. Lect Notes Comput Sci 12624:223–240. https://doi.org/10.1007/978-3-030-69535-4_14

  379. Weißkirchen N, Reddy MV, Wendemuth A, Siegert I (2020) Utilizing computer vision algorithms to detect and describe local features in images for emotion recognition from speech. In: IEEE International conference on human-machine systems, ICHMS 2020, Rome, Italy, pp 1–6. https://doi.org/10.1109/ICHMS49158.2020.9209538. Accessed 7–9 Sept 2020

  380. Przybyl K, Gawalek J, Koszela K, Przybyl J, Rudzinska M, Gierz L, Domian E (2019) Neural image analysis and electron microscopy to detect and describe selected quality factors of fruit and vegetable spray-dried powders - case study: Chokeberry powder. Sensors 19(20):4413. https://doi.org/10.3390/s19204413

    Article  ADS  PubMed  PubMed Central  Google Scholar 

  381. Khan MJ, Zafar A, Tumanian V, Yue D, Li G (2019) Object detection boosting using object attributes in detect and describe framework. In: 31st IEEE International Conference on Tools with Artificial Intelligence, ICTAI 2019, Portland, OR, USA, pp 886–893. https://doi.org/10.1109/ICTAI.2019.00126. Accessed 4–6 Nov 2019

  382. Noh H, Araujo A, Sim J, Weyand T, Han B (2017) Large-scale image retrieval with attentive deep local features. In: IEEE International Conference on Computer Vision, ICCV 2017, Venice, Italy, pp 3476–3485. https://doi.org/10.1109/ICCV.2017.374. Accessed 22–29 Oct 2017

  383. Revaud J, Souza CR, Humenberger M, Weinzaepfel P (2019) R2D2: reliable and repeatable detector and descriptor. In: Wallach HM, Larochelle H, Beygelzimer A, d’Alché-Buc F, Fox EB, Garnett R (eds.) Advances in neural information processing systems 32: annual conference on neural information processing systems 2019, NeurIPS 2019, Vancouver, BC, Canada, pp 12405–12415. https://proceedings.neurips.cc/paper/2019/hash/3198dfd0aef271d22f7bcddd6f12f5cb-Abstract.html. Accessed 8–14 Dec 2019

  384. Cao B, Araujo A, Sim J (2020) Unifying deep local and global features for image search. In: Vedaldi A, Bischof H, Brox T, Frahm J (eds) Computer vision - ECCV 2020 - 16th European conference, Glasgow, UK, Proceedings, Part XX. Lecture Notes in Computer Science, vol. 12365, pp 726–743. https://doi.org/10.1007/978-3-030-58565-5_43. Accessed 23–28 Aug 2020

  385. Tyszkiewicz MJ, Fua P, Trulls E (2020) DISK: learning local features with policy gradient. In: Larochelle H, Ranzato M, Hadsell R, Balcan M, Lin H (eds) Advances in neural information processing systems 33: annual conference on neural information processing systems 2020, NeurIPS 2020, Virtual. https://proceedings.neurips.cc/paper/2020/hash/a42a596fc71e17828440030074d15e74-Abstract.html. Accessed 6–12 Dec 2020

  386. Li K, Wang L, Liu L, Ran Q, Xu K, Guo Y (2022) Decoupling makes weakly supervised local feature better. In: IEEE/CVF Conference on computer vision and pattern recognition, CVPR 2022, New Orleans, LA, USA, pp 15817–15827. https://doi.org/10.1109/CVPR52688.2022.01538. Accessed 18–24 June 2022

  387. Zhou Q, Sattler T, Leal-Taixé L (2021) Patch2pix: Epipolar-guided pixel-level correspondences. In: IEEE Conference on computer vision and pattern recognition, CVPR 2021, Virtual, June 19-25, 2021, pp 4669–4678. https://doi.org/10.1109/CVPR46437.2021.00464. https://openaccess.thecvf.com/content/CVPR2021/html/Zhou_Patch2Pix_Epipolar-Guided_Pixel-Level_Correspondences_CVPR_2021_paper.html

  388. Song L, Liu G, Ma M (2022) Td-net: unsupervised medical image registration network based on transformer and CNN. Appl Intell 52(15):18201–18209. https://doi.org/10.1007/s10489-022-03472-w

    Article  Google Scholar 

  389. Zhu Y, Lu S (2022) Swin-voxelmorph: a symmetric unsupervised learning model for deformable medical image registration using swin transformer. In: Wang L, Dou Q, Fletcher PT, Speidel S, Li S (eds) Medical image computing and computer assisted intervention - MICCAI 2022 - 25th international conference, Singapore, Proceedings, Part VI. Lecture Notes in Computer Science, 13436:78–87. https://doi.org/10.1007/978-3-031-16446-0_8. Accessed 18–22 Sept 2022

  390. Liu C, Yuen J, Torralba A (2011) SIFT flow: dense correspondence across scenes and its applications. IEEE Trans Pattern Anal Mach Intell 33(5):978–994. https://doi.org/10.1109/TPAMI.2010.147

    Article  PubMed  Google Scholar 

  391. Li X, Han K, Li S, Prisacariu V (2020) Dual-resolution correspondence networks. In: Larochelle H, Ranzato M, Hadsell R, Balcan M, Lin H (eds) Advances in neural information processing systems 33: annual conference on neural information processing systems 2020, NeurIPS 2020, Virtual. https://proceedings.neurips.cc/paper/2020/hash/c91591a8d461c2869b9f535ded3e213e-Abstract.html. Accessed 6–12 Dec 2020

  392. Sun J, Shen Z, Wang Y, Bao H, Zhou X (2021) Loftr: detector-free local feature matching with transformers. In: IEEE Conference on computer vision and pattern recognition, CVPR 2021, Virtual, pp 8922–8931. https://doi.org/10.1109/CVPR46437.2021.00881. https://openaccess.thecvf.com/content/CVPR2021/html/Sun_LoFTR_Detector-Free_Local_Feature_Matching_With_Transformers_CVPR_2021_paper.html. Accessed 19–25 June 2021

  393. Huang D, Chen Y, Xu S, Liu Y, Wu W, Ding Y, Wang C, Tang F (2022) Adaptive assignment for geometry aware local feature matching. https://doi.org/10.48550/arXiv.2207.08427

  394. Xie T, Dai K, Wang K, Li R, Zhao L (2023) Deepmatcher: a deep transformer-based network for robust and accurate local feature matching. https://doi.org/10.48550/arXiv.2301.02993

  395. Dai K, Xie T, Wang K, Jiang Z, Li R, Zhao L (2023) Oamatcher: an overlapping areas-based network for accurate local feature matching. https://doi.org/10.48550/arXiv.2302.05846

  396. Melekhov I, Tiulpin A, Sattler T, Pollefeys M, Rahtu E, Kannala J .: Dgc-net: dense geometric correspondence network. In: IEEE Winter conference on applications of computer vision, WACV 2019, Waikoloa Village, HI, USA, pp 1034–1042. IEEE, (2019). https://doi.org/10.1109/WACV.2019.00115. Accessed 7–11 Jan 2019

  397. Truong P, Danelljan M, Timofte R (2020) Glu-net: global-local universal network for dense flow and correspondences. In: 2020 IEEE/CVF Conference on computer vision and pattern recognition, CVPR 2020, Seattle, WA, USA, pp 6257–6267. Computer Vision Foundation / IEEE. https://doi.org/10.1109/CVPR42600.2020.00629. https://openaccess.thecvf.com/content_CVPR_2020/html/Truong_GLU-Net_Global-Local_Universal_Network_for_Dense_Flow_and_Correspondences_CVPR_2020_paper.html. Accessed 13–19 June 2020

  398. Truong P, Danelljan M, Gool LV, Timofte R (2021) Learning accurate dense correspondences and when to trust them. In: IEEE Conference on computer vision and pattern recognition, CVPR 2021, Virtual, pp 5714–5724. Computer Vision Foundation / IEEE. https://doi.org/10.1109/CVPR46437.2021.00566 . https://openaccess.thecvf.com/content/CVPR2021/html/Truong_Learning_Accurate_Dense_Correspondences_and_When_To_Trust_Them_CVPR_2021_paper.html. Accessed 19–25 June 2021

  399. Truong P, Danelljan M, Timofte R, Gool LV (2023) Pdc-net+: enhanced probabilistic dense correspondence network. IEEE Trans. Pattern Anal Mach Intell 45(8):10247–10266. https://doi.org/10.1109/TPAMI.2023.3249225

  400. Edstedt J, Athanasiadis I, Wadenbäck M, Felsberg M (2023) DKM: dense kernelized feature matching for geometry estimation. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition, CVPR 2023, Vancouver, BC, Canada, pp 17765–17775. IEEE. https://doi.org/10.1109/CVPR52729.2023.01704. Accessed 17–24 June 2023

  401. Edstedt J, Sun Q, Bökman G, Wadenbäck M, Felsberg M (2023) Roma: revisiting robust losses for dense feature matching. https://doi.org/10.48550/arXiv.2305.15404

  402. Efe U, Ince KG, Alatan AA (2021) DFM: a performance baseline for deep feature matching. In: IEEE Conference on computer vision and pattern recognition workshops, CVPR Workshops 2021, Virtual, pp 4284–4293. https://doi.org/10.1109/CVPRW53098.2021.00484. https://openaccess.thecvf.com/content/CVPR2021W/IMW/html/Efe_DFM_A_Performance_Baseline_for_Deep_Feature_Matching_CVPRW_2021_paper.html. Accessed 19–25 June 2021

  403. Jiang W, Trulls E, Hosang J, Tagliasacchi A, Yi KM (2021) COTR: correspondence transformer for matching across images. In: 2021 IEEE/CVF International conference on computer vision, ICCV 2021, Montreal, QC, Canada, pp 6187–6197. https://doi.org/10.1109/ICCV48922.2021.00615. Accessed 10–17 Oct 2021

  404. Chen H, Luo Z, Zhou L, Tian Y, Zhen M, Fang T, McKinnon D, Tsin Y, Quan L (2022) Aspanformer: detector-free image matching with adaptive span transformer. In: Avidan S, Brostow GJ, Cissé M, Farinella GM, Hassner T (eds) Computer vision - ECCV 2022 - 17th European conference, Tel Aviv, Israel, Proceedings, Part XXXII. Lecture Notes in Computer Science, vol. 13692, pp 20–36. https://doi.org/10.1007/978-3-031-19824-3_2. Accessed 23–27 Oct 2022

  405. Di Y, Liao Y, Zhu K, Zhou H, Zhang Y, Duan Q, Liu J, Lu M (2023) Mivi: multi-stage feature matching for infrared and visible image. Vis Comput pp 1–13

  406. Dai A, Chang AX, Savva M, Halber M, Funkhouser TA, Nießner, M.: Scannet: richly-annotated 3d reconstructions of indoor scenes. In: 2017 IEEE Conference on Computer Vision and Pattern Recognition, CVPR 2017, Honolulu, HI, USA, pp 2432–2443 (2017). https://doi.org/10.1109/CVPR.2017.261. Accessed 21–26 July 2017

  407. Pan W, Sun X, Qian Y (2023) RGB-D saliency detection via complementary and selective learning. Appl Intell 53(7):7957–7969. https://doi.org/10.1007/s10489-022-03612-2

    Article  Google Scholar 

  408. He C, Qiao Y, Mao R, Li M, Wang M (2023) Enhanced litehrnet based sheep weight estimation using RGB-D images. Comput Electron Agric 206:107667. https://doi.org/10.1016/j.compag.2023.107667

    Article  Google Scholar 

  409. Li Y, Zhu D, Chen H, Nie J, Liu J, Tu C, Li H (2023) Multi-foreground objects segmentation based on RGB-D image. Commun Inf Syst 23(1):31–55. https://doi.org/10.4310/cis.2023.v23.n1.a2

    Article  ADS  MathSciNet  Google Scholar 

  410. Li Z, Snavely N (2018) Megadepth: learning single-view depth prediction from internet photos. In: 2018 IEEE Conference on Computer Vision and Pattern Recognition, CVPR 2018, Salt Lake City, UT, USA, pp 2041–2050. https://doi.org/10.1109/CVPR.2018.00218. http://openaccess.thecvf.com/content_cvpr_2018/html/Li_MegaDepth_Learning_Single-View_CVPR_2018_paper.html. Accessed 18–22 June 2018

  411. Schönberger JL, Frahm J (2016) Structure-from-motion revisited. In: 2016 IEEE Conference on computer vision and pattern recognition, CVPR 2016, Las Vegas, NV, USA, pp 4104–4113. https://doi.org/10.1109/CVPR.2016.445. Accessed 27–30 June 2016

  412. Gomez-Donoso F, Castaño-Amoros J, Escalona F, Cazorla M (2023) Three-dimensional reconstruction using SFM for actual pedestrian classification. Expert Syst Appl 213(Part):119006. https://doi.org/10.1016/j.eswa.2022.119006

  413. Liu Z, Qv W, Cai H, Guan H, Zhang S (2023) An efficient and robust hybrid sfm method for large-scale scenes. Remote Sens 15(3):769. https://doi.org/10.3390/rs15030769

    Article  ADS  Google Scholar 

  414. Gonçalves G, Gonçalves D, Gómez-Gutiérrez Á, Andriolo U, Pérez-Alvárez JA (2021) 3d reconstruction of coastal cliffs from fixed-wing and multi-rotor UAS: impact of sfm-mvs processing parameters, image redundancy and acquisition geometry. Remote Sens 13(6):1222. https://doi.org/10.3390/rs13061222

    Article  ADS  Google Scholar 

  415. Schönberger JL, Zheng E, Frahm J, Pollefeys M (2016) Pixelwise view selection for unstructured multi-view stereo. In: Leibe B, Matas J, Sebe N, Welling M (eds) Computer vision - ECCV 2016 - 14th European conference, Amsterdam, The Netherlands, Proceedings, Part III. Lecture Notes in Computer Science, 9907:501–518. https://doi.org/10.1007/978-3-319-46487-9_31. Accessed 11–14 2016

  416. Sattler T, Weyand T, Leibe B, Kobbelt (2012) Image retrieval for image-based localization revisited. In: Bowden R, Collomosse JP, Mikolajczyk K (eds) British machine vision conference, BMVC 2012, Surrey, UK, pp 1–12. https://doi.org/10.5244/C.26.76. Accessed 3–7 Sept 2012

  417. Zhang Z, Sattler T, Scaramuzza D (2021) Reference pose generation for long-term visual localization via learned features and view synthesis. Int J Comput Vis 129(4):821–844. https://doi.org/10.1007/s11263-020-01399-8

    Article  PubMed  Google Scholar 

  418. Taira H, Okutomi M, Sattler T, Cimpoi M, Pollefeys M, Sivic J, Pajdla T, Torii A (2021) Inloc: indoor visual localization with dense matching and view synthesis. IEEE Trans Pattern Anal Mach Intell 43(4):1293–1307. https://doi.org/10.1109/TPAMI.2019.2952114

    Article  PubMed  Google Scholar 

  419. Wijmans E, Furukawa Y (2017) Exploiting 2d floorplan for building-scale panorama RGBD alignment. In: 2017 IEEE Conference on computer vision and pattern recognition, CVPR 2017, Honolulu, HI, USA, July 21-26, 2017, pp. 1427–1435. https://doi.org/10.1109/CVPR.2017.156

  420. Fischler MA, Bolles RC (1981) Random sample consensus: a paradigm for model fitting with applications to image analysis and automated cartography. Commun ACM 24(6):381–395. https://doi.org/10.1145/358669.358692

    Article  MathSciNet  Google Scholar 

  421. Maurer A, Pontil M (2020) Estimating weighted areas under the ROC curve. In: Larochelle H, Ranzato M, Hadsell R, Balcan M, Lin H (eds.) Advances in neural information processing systems 33: annual conference on neural information processing systems 2020, NeurIPS 2020, Virtual. https://proceedings.neurips.cc/paper/2020/hash/5781a2637b476d781eb3134581b32044-Abstract.html. Accessed 6–12 Dec 2020

  422. Jaskowiak PA, Costa IG, Campello RJGB (2022) The area under the ROC curve as a measure of clustering quality. Data Min Knowl Discov 36(3):1219–1245. https://doi.org/10.1007/s10618-022-00829-0

    Article  MathSciNet  Google Scholar 

  423. Gajic B, Amato A, Baldrich R, Weijer J, Gatta C (2022) Area under the ROC curve maximization for metric learning. In: IEEE/CVF Conference on computer vision and pattern recognition workshops, CVPR Workshops 2022, New Orleans, LA, USA, pp 2806–2815 . https://doi.org/10.1109/CVPRW56347.2022.00318. Accessed 19–20 June 2022

  424. Mingote V, Miguel A, Ortega A, Lleida E (2020) Optimization of the area under the ROC curve using neural network supervectors for text-dependent speaker verification. Comput Speech Lang 63:101078. https://doi.org/10.1016/j.csl.2020.101078

    Article  Google Scholar 

  425. Bian J, Lin W, Liu Y, Zhang L, Yeung S, Cheng M, Reid I (2020) GMS: grid-based motion statistics for fast, ultra-robust feature correspondence. Int J Comput Vis 128(6):1580–1593. https://doi.org/10.1007/s11263-019-01280-3

    Article  MathSciNet  Google Scholar 

  426. Mao R, Bai C, An Y, Zhu F, Lu C (2022) 3dg-stfm: 3d geometric guided student-teacher feature matching. In: Avidan S, Brostow GJ, Cissé M, Farinella GM, Hassner T (eds) Computer vision - ECCV 2022 - 17th European conference, Tel Aviv, Israel, Proceedings, Part XXVIII. Lecture Notes in Computer Science, vol. 13688, pp 125–142. Springer. https://doi.org/10.1007/978-3-031-19815-1_8. Accessed 23–27 Oct 2022

  427. Ni J, Li Y, Huang Z, Li H, Bao H, Cui Z, Zhang G (2023) PATS: patch area transportation with subdivision for local feature matching. In: IEEE/CVF Conference on computer vision and pattern recognition, CVPR 2023, Vancouver, BC, Canada, IEEE, pp 17776–17786. https://doi.org/10.1109/CVPR52729.2023.01705. Accessed 17–24 June 2023

  428. Zhu S, Liu X (2023) Pmatch: paired masked image modeling for dense geometric matching. In: IEEE/CVF Conference on computer vision and pattern recognition, CVPR 2023, Vancouver, BC, Canada, pp 21909–21918. IEEE. https://doi.org/10.1109/CVPR52729.2023.02098. Accessed 17–24 June 2023

  429. Shi Y, Cai J, Shavit Y, Mu T, Feng W, Zhang K (2022) Clustergnn: cluster-based coarse-to-fine graph neural network for efficient feature matching. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition, CVPR 2022, New Orleans, LA, USA, IEEE, pp 12507–12516. https://doi.org/10.1109/CVPR52688.2022.01219. Accessed 18–24 June 2022

  430. Tan D, Liu J, Chen X, Chen C, Zhang R, Shen Y, Ding S, Ji R (2022) ECO-TR: efficient correspondences finding via coarse-to-fine refinement. In: Avidan S, Brostow GJ, Cissé M, Farinella GM, Hassner T (eds) Computer vision - ECCV 2022 - 17th European conference, Tel Aviv, Israel, Proceedings, Part X. Lecture Notes in Computer Science, vol 13670, pp 317–334. Springer. https://doi.org/10.1007/978-3-031-20080-9_19. Accessed 23–27 Oct 2022

  431. Yu J, Chang J, He J, Zhang T, Yu J, Wu F (2023) Adaptive spot-guided transformer for consistent local feature matching. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition, CVPR 2023, Vancouver, BC, Canada, IEEE, pp 21898–21908. https://doi.org/10.1109/CVPR52729.2023.02097. Accessed 17–24 June 2023

  432. Raguram R, Frahm J, Pollefeys M (2008) A comparative analysis of RANSAC techniques leading to adaptive real-time random sample consensus. In: Forsyth DA, Torr PHS, Zisserman A (eds.) Computer vision - ECCV 2008, 10th European conference on computer vision, Marseille, France, Proceedings, Part II. Lecture Notes in Computer Science, vol 5303, pp 500–513. https://doi.org/10.1007/978-3-540-88688-4_37. Accessed 12–8 Oct2008

  433. Hartley R, Zisserman A (2004). Multiple View Geometry in Computer Vision. https://doi.org/10.1017/cbo9780511811685

    Article  Google Scholar 

  434. Mishkin D, Radenovic F, Matas J (2018) Repeatability is not enough: learning affine regions via discriminability. In: Ferrari V, Hebert M, Sminchisescu C, Weiss Y (eds) Computer vision - ECCV 2018 - 15th European Conference, Munich, Germany, Proceedings, Part IX. Lecture Notes in Computer Science 11213:287–304. https://doi.org/10.1007/978-3-030-01240-3_18. Accessed 8–14 Sept 2018

  435. Rocco I, Cimpoi M, Arandjelovic R, Torii A, Pajdla T, Sivic J (2022) Ncnet: neighbourhood consensus networks for estimating image correspondences. IEEE Trans Pattern Anal Mach Intell 44(2):1020–1034. https://doi.org/10.1109/TPAMI.2020.3016711

    Article  PubMed  Google Scholar 

  436. Mikolajczyk K, Schmid C (2005) A performance evaluation of local descriptors. IEEE Trans Pattern Anal Mach Intell 27(10):1615–1630. https://doi.org/10.1109/TPAMI.2005.188

    Article  PubMed  Google Scholar 

  437. Zhou Q, Sattler T, Pollefeys M, Leal-Taixé L (2020) To learn or not to learn: visual localization from essential matrices. In: 2020 IEEE International conference on robotics and automation, ICRA 2020, Paris, France, May 31 - August 31, 2020, pp 3319–3326. https://doi.org/10.1109/ICRA40945.2020.9196607

  438. Sarlin P, Unagar A, Larsson M, Germain H, Toft C, Larsson V, Pollefeys M, Lepetit V, Hammarstrand L, Kahl F, Sattler T (2021) Back to the feature: learning robust camera localization from pixels to pose. In: IEEE Conference on computer vision and pattern recognition, CVPR 2021, Virtual, pp 3247–3257. https://doi.org/10.1109/CVPR46437.2021.00326. https://openaccess.thecvf.com/content/CVPR2021/html/Sarlin_Back_to_the_Feature_Learning_Robust_Camera_Localization_From_Pixels_CVPR_2021_paper.html. Accessed 19–25 June 2021

  439. Li X, Wang S, Zhao Y, Verbeek J, Kannala J (2020) Hierarchical scene coordinate classification and regression for visual localization. In: 2020 IEEE/CVF Conference on computer vision and pattern recognition, CVPR 2020, Seattle, WA, USA, pp 11980–11989. https://doi.org/10.1109/CVPR42600.2020.01200. https://openaccess.thecvf.com/content_CVPR_2020/html/Li_Hierarchical_Scene_Coordinate_Classification_and_Regression_for_Visual_Localization_CVPR_2020_paper.html. Accesed 13–19 2020

  440. Sarlin P, Cadena C, Siegwart R, Dymczyk M (2019) From coarse to fine: robust hierarchical localization at large scale. In: IEEE Conference on computer vision and pattern recognition, CVPR 2019, Long Beach, CA, USA, pp 12716–12725. https://doi.org/10.1109/CVPR.2019.01300. http://openaccess.thecvf.com/content_CVPR_2019/html/Sarlin_From_Coarse_to_Fine_Robust_Hierarchical_Localization_at_Large_Scale_CVPR_2019_paper.html

  441. Tang S, Tang S, Tagliasacchi A, Tan P, Furukawa Y (2022) Neumap: neural coordinate mapping by auto-transdecoder for camera localization. https://doi.org/10.48550/arXiv.2211.11177

  442. Yang T, Nguyen D, Heijnen H, Balntas V (2020) Ur2kid: unifying retrieval, keypoint detection, and keypoint description without local correspondence supervision. arXiv:2001.07252

  443. Luo Z, Zhou L, Bai X, Chen H, Zhang J, Yao Y, Li S, Fang T, Quan L (2020) Aslfeat: learning local features of accurate shape and localization. In: 2020 IEEE/CVF Conference on computer vision and pattern recognition, CVPR 2020, Seattle, WA, USA, pp 6588–6597. https://doi.org/10.1109/CVPR42600.2020.00662. https://openaccess.thecvf.com/content_CVPR_2020/html/Luo_ASLFeat_Learning_Local_Features_of_Accurate_Shape_and_Localization_CVPR_2020_paper.html. Accessed 13–19 June 2020

  444. Yu H, Feng Y, Ye W, Jiang M, Bao H, Zhang G (2022) Improving feature-based visual localization by geometry-aided matching. https://doi.org/10.48550/arXiv.2211.08712

  445. Xu R, Li X, Zhou B, Loy CC (2019) Deep flow-guided video inpainting. In: IEEE Conference on computer vision and pattern recognition, CVPR 2019, Long Beach, CA, USA, pp 3723–3732. https://doi.org/10.1109/CVPR.2019.00384. http://openaccess.thecvf.com/content_CVPR_2019/html/Xu_Deep_Flow-Guided_Video_Inpainting_CVPR_2019_paper.html. Accessed 16–20 June 2019

Download references

Acknowledgements

This work is supported in part by the National Natural Science Foundation of China under Grant 61976124 and 62372077. It is also supported in part by the Scientific Research Fund of Yunnan Provincial Education Department under Grant 2021J0007.

Author information

Authors and Affiliations

Authors

Contributions

Yun Liao: Conceptualization and Methodology; Yide Di: Writing; Kaijun Zhu: Validation; Hao Zhou: Software; Mingyu Lu: Supervision; Yijia Zhang: Formal analysis; Qing Duan: Investigation; Junhui Liu: Data Curation.

Corresponding author

Correspondence to Yide Di.

Ethics declarations

Ethical and informed consent for data used

This submission does not include human or animal research.

Competing Interests

The authors declare that they have no conflicts of interests or competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liao, Y., Di, Y., Zhu, K. et al. Local feature matching from detector-based to detector-free: a survey. Appl Intell (2024). https://doi.org/10.1007/s10489-024-05330-3

Download citation

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10489-024-05330-3

Keywords

Navigation