Skip to main content
Log in

Managing non-cooperative behaviors in consensus reaching processes: a comprehensive self-management weight generation mechanism

  • Published:
Applied Intelligence Aims and scope Submit manuscript

Abstract

In group decision-making, a consensus-reaching process (CRP) is critical to minimize conflicts among decision-makers. Non-cooperative behaviors during the CRP may slow the consensus achievement or even lead to consensus failure. Previous research has not thoroughly identified various non-cooperative behaviors nor has it developed distinct management strategies for different CRP stages. This study aims to provide a systematic approach for identifying and addressing non-cooperative behaviors at different CRP stages, employing tailored management for each behavior type. We introduce and apply a concept named ‘comprehensive score’ to facilitate varied responses to non-cooperative behaviors throughout the CRP. A null-norm operator-based self-management weight generation mechanism is proposed to monitor experts’ historical performance, while a systematic analysis of experts’ characteristics enables detailed classification of non-cooperative behaviors. Through the research, we find that there are seven types of non-cooperative researches which needs to be respectively addressed according to its effects. The proposed management scheme improves the efficiency of CRP. Besides, the current research enriches the mechanisms for identifying and handling non-cooperative behaviors. It offers methodological references for non-cooperative behaviors management in more complex decision-making scenarios.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Algorithm 1
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Data availability and access

The authors confirm that the data supporting the findings of this study are available within the article and its supplementary materials.

Notes

  1. Considering that if \(k=1\), function \(\sigma _k\) has ever been applied to describe the relationship between the orness of the pessimistic exponential OWA operator[36, 37], we call \(\sigma _k\) the orness pessimistic exponential(OPE) function (see Fig. 9) in the current work. The reason why we choose OPE function is that: supposed that k is fixed, i) for a fixed y, the value of \(\sigma _k \left( y \right) \) decreases as value n increases, ii) for a fixed n, the value of \(\sigma _k \left( y \right) \) increases as value y increases. Taking use of these two properties, we can realize the distinguished treatment for non-cooperative behaviors in different periods of CRP by applying (12).

References

  1. Kacprzyk J (1986) Group decision making with a fuzzy linguistic majority. Fuzzy Sets Syst 18(2):105–118

    MathSciNet  Google Scholar 

  2. Garcia-Zamora D, Labella A, Ding WP, Rodríguez RM, Martínez L (2022) Large-scale group decision making: A systematic review and a critical analysis. IEEE/CAA J Autom Sin 9:949–966

    Google Scholar 

  3. Hochbaum DS, Levin A (2006) Methodologies and algorithms for group-rankings decision. Manag Sci 52:1394–1408

    Google Scholar 

  4. Martínez L (2007) Montero J Challenges for improving consensus reaching process in collective decisions. New Math Nat Comput 03:203–217

    Google Scholar 

  5. Bezdek JC, Spillman B, Spillman RJ (1978) A fuzzy relation space for group decision theory. Fuzzy Sets Syst 1:255–268

    MathSciNet  Google Scholar 

  6. Herrera-Viedma E, Cabrerizo FJ, Kacprzyk J, Pedrycz W (2014) A review of soft consensus models in a fuzzy environment. Inf Fusion 17:4–13

    Google Scholar 

  7. Zhang Z, Li Z (2022) Personalized individual semantics-based consistency control and consensus reaching in linguistic group decision making. IEEE Trans Syst Man Cybern: Syst 52(9):5623–5635

    Google Scholar 

  8. Li P, Xu Z, Zhang Z, Li Z, Wei C (2023) Consensus reaching in multi-criteria social network group decision making: A stochastic multicriteria acceptability analysis-based method. Inf Fusion 97:101825

    Google Scholar 

  9. Dong Y, Zha Q, Zhang H, Herrera F (2021) Consensus reaching and strategic manipulation in group decision making with trust relationships. IEEE Trans Syst Man Cybern: Syst 51(10):6304–6318

    Google Scholar 

  10. Quesada FJ, Palomares I, Martínez L (2015) Managing experts behavior in large-scale consensus reaching processes with uninorm aggregation operators. Appl Soft Comput 35:873–887

    Google Scholar 

  11. Gou X, Xu Z (2021) Managing noncooperative behaviors in large-scale group decision-making with linguistic preference orderings: The application in internet venture capital. Inf Fusion 69:142–155

    Google Scholar 

  12. Palomares I, Martínez L, Herrera F (2014) A consensus model to detect and manage noncooperative behaviors in large-scale group decision making. IEEE Trans Fuzzy Syst 22(3):516–530

    Google Scholar 

  13. Xue M, Fu C, Yang S (2020) Group consensus reaching based on a combination of expert weight and expert reliability. Appl Math Comput 369:124902

    MathSciNet  Google Scholar 

  14. Du Z, Yu S, Xu X (2020) Managing noncooperative behaviors in large-scale group decision-making: Integration of independent and supervised consensus-reaching models. Inf Sci 531(4):119–138

    MathSciNet  Google Scholar 

  15. Mandal P, Samanta S, Pal M (2022) Large-scale group decision-making based on pythagorean linguistic preference relations using experts clustering and consensus measure with non-cooperative behavior analysis of clusters. Complex Intell Syst 8:819–833

    Google Scholar 

  16. Dong Y, Zhang H, Herrera-Viedma E (2016) Integrating experts’ weights generated dynamically into the consensus reaching process and its applications in managing non-cooperative behaviors. Decis Support Syst 84:1–15

    Google Scholar 

  17. Dong Y, Zhao S, Zhang H, Chiclana F, Herrera-Viedma E (2018) A self-management mechanism for noncooperative behaviors in large-scale group consensus reaching processes. IEEE Trans Fuzzy Syst 26(6):3276–3288

    Google Scholar 

  18. Liu B, Guo S, Yan K, Li L, Wang X (2021) A consensus model to manage the non-cooperative behaviors of individuals in uncertain group decision making problems during the covid-19 outbreak. Appl Soft Comput 99(1):106879

    Google Scholar 

  19. Xu X, Du Z, Chen X (2015) Consensus model for multi-criteria large-group emergency decision making considering non-cooperative behaviors and minority opinions. Decis Support Syst 79:150–160

    Google Scholar 

  20. Tian Z, Nie R, Wang J (2019) Social network analysis-based consensus-supporting framework for large-scale group decision-making with incomplete interval type-2 fuzzy information. Inf Sci 502:446–4714

    Google Scholar 

  21. Zadeh LA (1965) Fuzzy sets. Inf Control 8:338–353

    Google Scholar 

  22. Orlovsky SA (1978) Decision-making with a fuzzy preference relation. Fuzzy Sets Syst 1:155–167

    MathSciNet  Google Scholar 

  23. Palomares I, Estrella FJ, Martínez L, Herrera F (2014) Consensus under a fuzzy context: Taxonomy, analysis framework afryca and experimental case of study. Inf Fusion 20(11):252–271

    Google Scholar 

  24. Calvo T, De Baets B, Fodor J (2001) The functional equations of frank and alsina for uninorms and nullnorms. Fuzzy Sets Syst 120(3):385–394

    MathSciNet  Google Scholar 

  25. Campos Souza PV, Lughofer ED (2022) An advanced interpretable fuzzy neural network model based on uni-nullneuron constructed from n-uninorms. Fuzzy Sets Syst 426:1–26

    MathSciNet  Google Scholar 

  26. Calvo T, Baets BD, Fodor JC (2001) The functional equations of frank and alsina for uninorms and nullnorms. Fuzzy Sets Syst 120:385–394

    MathSciNet  Google Scholar 

  27. Xu X, Zhang Q, Chen X (2020) Consensus-based non-cooperative behaviors management in large-group emergency decision-making considering experts’ trust relations and preference risks. Knowl-based Syst 190:105108

    Google Scholar 

  28. Gou X, Xu Z (2021) Managing noncooperative behaviors in large-scale group decision-making with linguistic preference orderings: The application in internet venture capital. Inf Fusion 69:142–155

    Google Scholar 

  29. Shi Z, Wang X, Palomares I, Guo S, Ding R (2018) A novel consensus model for multi-attribute large-scale group decision making based on comprehensive behavior classification and adaptive weight updating. Knowl-based Syst 158:196–208

    Google Scholar 

  30. Xiong K, Dong Y, Zha Q (2023) A large-scale consensus model to manage non-cooperative behaviors in group decision making: A perspective based on historical data. Expert Syst Appl 214:119163

    Google Scholar 

  31. Palomares I, Martínez-López L, Herrera F (2014) A consensus model to detect and manage noncooperative behaviors in large-scale group decision making. IEEE Trans Fuzzy Syst 22:516– 530

  32. Herrera-Viedma E, Herrera F, Chiclana F (2002) A consensus model for multiperson decision making with different preference structures. IEEE Trans Syst Man Cybern A Syst Hum 32(3):394–402

    Google Scholar 

  33. Yager RR (1996) Quantifier guided aggregation using owa operators. Int J Intell Syst 11(1):49–73

    Google Scholar 

  34. Wu J, Li X, Chiclana F, Yager R (2019) An attitudinal trust recommendation mechanism to balance consensus and harmony in group decision making. IEEE Trans Fuzzy Syst 27(11):2163–2175

    Google Scholar 

  35. Hwang CL, Yoon K (1979) Multiple attribute decision making : methods and applications : a state-of-the-art survey

  36. Filev D, Yager RR (1998) On the issue of obtaining owa operator weights. Fuzzy Sets Syst 94:157–169

    MathSciNet  Google Scholar 

  37. Liu H, Rodríguez RM (2014) A fuzzy envelope for hesitant fuzzy linguistic term set and its application to multicriteria decision making. Inf Sci 258:220–238

    MathSciNet  Google Scholar 

  38. Labella Á, Liu Y, Rodríguez RM, Martínez L (2018) Analyzing the performance of classical consensus models in large scale group decision making: A comparative study. Appl Soft Comput 67:677–690

    Google Scholar 

  39. Gao Y, Zhang Z (2022) Consensus reaching with non-cooperative behavior management for personalized individual semantics-based social network group decision making. J Oper Res Soc 73(11):2518–2535

    Google Scholar 

  40. Quesada F, Palomares I, Martínez L (2015) Managing experts behavior in large-scale consensus reaching processes with uninorm aggregation operators. Appl Soft Comput 35:873–887

    Google Scholar 

  41. Xu X, Du Z, Chen X (2015) Consensus model for multi-criteria large-group emergency decision making considering non-cooperative behaviors and minority opinions. Decis Support Syst 79:150–160

    Google Scholar 

  42. Xu X, Du Z, Chen X, Cai C (2019) Confidence consensus-based model for large-scale group decision making: A novel approach to managing non-cooperative behaviors. Inf Sci 477:410–427

    ADS  Google Scholar 

  43. Mandal Prasenjit SS, Madhumangal P (2021) Large-scale group decision-making based on pythagorean linguistic preference relations using experts clustering and consensus measure with non-cooperative behavior analysis of clusters. Complex Intell Syst 8:819–833

    Google Scholar 

  44. Xiang L (2020) Energy emergency supply chain collaboration optimization with group consensus through reinforcement learning considering non-cooperative behaviours. Energy 210:118597

    CAS  Google Scholar 

  45. Xu W, Chen X, Dong Y, Chiclana F (2021) Impact of decision rules and non-cooperative behaviors on minimum consensus cost in group decision making. Group Decis Negot 30(6):1239–1260

    Google Scholar 

  46. Li C-C, Dong Y, Xu Y, Chiclana F, Herrera-Viedma E, Herrera F (2019) An overview on managing additive consistency of reciprocal preference relations for consistency-driven decision making and fusion: Taxonomy and future directions. Inf Fusion 52:143–156

    Google Scholar 

  47. García-Zamora D, Labella A, Ding W, Rodriguez RM, Martínez L (2022) Large-scale group decision making: A systematic review and a critical analysis. IEEE/CAA J Autom Sin 9:949–966

    Google Scholar 

  48. Yager RR (1988) On ordered weighted averaging aggregation operators in multicriteria decisionmaking. IEEE Trans Syst Man Cybern 18(1):183–190

    MathSciNet  Google Scholar 

Download references

Acknowledgements

This work was supported in part by the National Natural Science Foundation of China (62006154), the Andalucía Excellence Research Program (ProyExcel-00257), the Spanish Ministry of Economy and Competitiveness through the Postdoctoral Fellowship Ramón y Cajal (RYC-2017-21978).

Author information

Authors and Affiliations

Authors

Contributions

Yaya Liu: Conceptualization, Methodology, Original draft preparation. Xiaowen Zhang: Conceptualization, Methodology, Programming. Rosa M. Rodriguez: Data curation, Original draft preparation, Writing-Reviewing, Validation. Luis Martinez: Supervision, Writing- Reviewing and Editing.

Corresponding author

Correspondence to Yaya Liu.

Ethics declarations

Competing interests

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Ethics approval

Since the data used for this research does not involve human or animal participants, this section is not applicable.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendices

Appendix A: Some figures and tables

Fig. 9
figure 9

OPE function \(\sigma _k\) with \(k=1\) and \(k=2\)

Table 5 The original expert mutual evaluation score, comprehensive score and expert weight
Table 6 The first round of expert mutual evaluation score, comprehensive score and expert weight

1.1 A.1   List of mathematical notations

The list of mathematical notations in the proposed consensus model is presented by Table 4.

Table 7 The second round of expert mutual evaluation score, comprehensive score and expert weight

1.2 A.2   Figures for OPE function

1.3 A.3    Tables in the case study

Tables in the case study is presented as below (see Table 5 to Table 7).

Appendix B: Adjusted preference relation matrix during the CRP process

B1. Experts’ adjusted preference relations in round 1.

$$\begin{aligned} P^{(1,1)}= & {} \left( \begin{matrix} 0.5&{} 0.5524&{} 0.9851&{} 0.7522&{} 0.4677&{} 0.6381\\ 0.4476&{} 0.5&{} 0.7952&{} 0.5599&{} 0.7749&{} 0.7\\ 0.0149&{} 0.2048&{} 0.5&{} 0.6&{} 0.6282&{} 0.6765\\ 0.2478&{} 0.4401&{} 0.4&{} 0.5&{} 0.5594&{} 0.3394\\ 0.5323&{} 0.2251&{} 0.3718&{} 0.4406&{} 0.5&{} 0.6895\\ 0.3619&{} 0.3&{} 0.3235&{} 0.6606&{} 0.3105&{} 0.5 \end{matrix} \right) \\ P^{(2,1)}= & {} \left( \begin{matrix} 0.5&{} 0.6286&{} 0.5619&{} 0.5988&{} 0.4&{} 0.2869\\ 0.3714&{} 0.5&{} 0.6654&{} 0.4597&{} 0.7205&{} 0.6\\ 0.4381&{} 0.3346&{} 0.5&{} 0.6912&{} 0.4829&{} 0.6\\ 0.4012&{} 0.5403&{} 0.3088&{} 0.5&{} 0.6924&{} 0.7236\\ 0.6&{} 0.2795&{} 0.5171&{} 0.3076&{} 0.5&{} 0.4930\\ 0.7131&{} 0.4&{} 0.4&{} 0.2764&{} 0.5070&{} 0.5 \end{matrix} \right) \\ P^{(3,1)}= & {} \left( \begin{matrix} 0.5&{} 0.5900&{} 0.4271&{} 0.8215&{} 0.4857&{} 0.9\\ 0.4100&{} 0.5&{} 0.5170&{} 0.4635&{} 0.4703&{} 0.8\\ 0.5729&{} 0.4830&{} 0.5&{} 0.7154&{} 0.6897&{} 0.7144\\ 0.1785&{} 0.5365&{} 0.2846&{} 0.5&{} 0.6812&{} 0.7779\\ 0.5143&{} 0.5297&{} 0.3103&{} 0.3188&{} 0.5&{} 0.7061\\ 0.1&{} 0.2&{} 0.2856&{} 0.2221&{} 0.2939&{} 0.5 \end{matrix} \right) \\ P^{(4,1)}= & {} \left( \begin{matrix} 0.5&{} 0.3268&{} 0.4787&{} 0.66767&{} 0.2700&{} 0.7997\\ 0.6732&{} 0.5&{} 0.5810&{} 0.8282&{} 0.6554&{} 0.7636\\ 0.5213&{} 0.4190&{} 0.5&{} 0.6935&{} 0.4719&{} 0.4600\\ 0.3324&{} 0.1718&{} 0.3065&{} 0.5&{} 0.3586&{} 0.1700\\ 0.7300&{} 0.3446&{} 0.5281&{} 0.6414&{} 0.5&{} 0.5920\\ 0.2003&{} 0.2364&{} 0.5400&{} 0.8300&{} 0.4080&{} 0.5 \end{matrix} \right) \\ P^{(5,1)}= & {} \left( \begin{matrix} 0.5&{} 0.5944&{} 0.4500&{} 0.4621&{} 0.5602&{} 0.5212\\ 0.4056&{} 0.5&{} 0.7846&{} 0.1825&{} 0.3&{} 0.7\\ 0.5500&{} 0.2154&{} 0.5&{} 0.2532&{} 0.6010&{} 0.5153\\ 0.5379&{} 0.8175&{} 0.7468&{} 0.5&{} 0.8399&{} 0.5971\\ 0.4398&{} 0.7&{} 0.3990&{} 0.1601&{} 0.5&{} 0.6852\\ 0.4788&{} 0.3&{} 0.4847&{} 0.4029&{} 0.3148&{} 0.5 \end{matrix} \right) \\ P^{(6,1)}= & {} \left( \begin{matrix} 0.5&{} 0.6548&{} 0.5566&{} 0.4595&{} 0.6253&{} 0.7818\\ 0.3452&{} 0.5&{} 0.6&{} 0.6854&{} 0.4361&{} 0.6148\\ 0.4434&{} 0.4&{} 0.5&{} 0.6664&{} 0.6910&{} 0.3500\\ 0.5405&{} 0.3146&{} 0.3336&{} 0.5&{} 0.6081&{} 0.3904\\ 0.3747&{} 0.5639&{} 0.3090&{} 0.3919&{} 0.5&{} 0.6842\\ 0.2182&{} 0.3852&{} 0.6500&{} 0.6096&{} 0.3158&{} 0.5 \end{matrix} \right) \\ P^{(7,1)}= & {} \left( \begin{matrix} 0.5&{} 0.8679&{} 0.4730&{} 0.7049&{} 0.6814&{} 0.7477\\ 0.1321&{} 0.5&{} 0.2&{} 0.5693&{} 0.7900&{} 0.7282\\ 0.5270&{} 0.8&{} 0.5&{} 0.9&{} 0.8094&{} 0.7511\\ 0.2951&{} 0.4307&{} 0.1&{} 0.5&{} 0.4223&{} 0.6235\\ 0.3186&{} 0.2100&{} 0.1906&{} 0.5777&{} 0.5&{} 0.7022\\ 0.2523&{} 0.2718&{} 0.2489&{} 0.3765&{} 0.2978&{} 0.5 \end{matrix} \right) \\ P^{(8,1)}= & {} \left( \begin{matrix} 0.5&{} 0.8842&{} 0.4413&{} 0.4348&{} 0.5822&{} 0.1302\\ 0.1158&{} 0.5&{} 0.5600&{} 0.7177&{} 0.7111&{} 0.3300\\ 0.5587&{} 0.4400&{} 0.5&{} 0.1610&{} 0.7300&{} 0.7392\\ 0.5652&{} 0.2823&{} 0.8390&{} 0.5&{} 0.5771&{} 0.8434\\ 0.4178&{} 0.2889&{} 0.2700&{} 0.4229&{} 0.5&{} 0.7643\\ 0.8698&{} 0.6700&{} 0.2608&{} 0.1566&{} 0.2357&{} 0.5 \end{matrix} \right) \end{aligned}$$

B2. Experts’ adjusted preference relations in round 2.

$$\begin{aligned} P^{(1,2)}= & {} \left( \begin{matrix} 0.5&{} 0.5921&{} 0.6919&{} 0.6366&{} 0.5082&{} 0.6026\\ 0.4079&{} 0.5&{} 0.6836&{} 0.5592&{} 0.9733&{} 0.6973\\ 0.3081&{} 0.3164&{} 0.5&{} 0.6&{} 0.6316&{} 0.6434\\ 0.3634&{} 0.4408&{} 0.4&{} 0.5&{} 0.5603&{} 0.4603\\ 0.4918&{} 0.0267&{} 0.3684&{} 0.4397&{} 0.5&{} 0.6820\\ 0.3974&{} 0.3027&{} 0.3566&{} 0.5397&{} 0.3180&{} 0.5 \end{matrix} \right) \\ P^{(2,2)}= & {} \left( \begin{matrix} 0.5&{} 0.6288&{} 0.5507&{} 0.5988&{} 0.4393&{} 0.2869\\ 0.3712&{} 0.5&{} 0.6654&{} 0.5031&{} 0.7186&{} 0.6126\\ 0.4493&{} 0.3346&{} 0.5&{} 0.5913&{} 0.5680&{} 0.6008\\ 0.4012&{} 0.4969&{} 0.4087&{} 0.5&{} 0.6191&{} 0.7098\\ 0.5607&{} 0.2814&{} 0.4320&{} 0.3809&{} 0.5&{} 0.2022\\ 0.7131&{} 0.3874&{} 0.3992&{} 0.2902&{} 0.7978&{} 0.5 \end{matrix} \right) \\ P^{(3,2)}= & {} \left( \begin{matrix} 0.5&{} 0.5902&{} 0.5332&{} 0.8129&{} 0.4996&{} 0.0301\\ 0.4098&{} 0.5&{} 0.5227&{} 0.5205&{} 0.5908&{} 0.7988\\ 0.4668&{} 0.4773&{} 0.5&{} 0.7154&{} 0.6618&{} 0.6104\\ 0.1871&{} 0.4795&{} 0.2846&{} 0.5&{} 0.6608&{} 0.6184\\ 0.5004&{} 0.4092&{} 0.3382&{} 0.3392&{} 0.5&{} 0.3346\\ 0.9699&{} 0.2012&{} 0.3896&{} 0.3816&{} 0.6654&{} 0.5 \end{matrix} \right) \\ P^{(4,2)}= & {} \left( \begin{matrix} 0.5&{} 0.3929&{} 0.5032&{} 0.6332&{} 0.3605&{} 0.7997\\ 0.6071&{} 0.5&{} 0.5816&{} 0.6707&{} 0.6364&{} 0.6727\\ 0.4968&{} 0.4184&{} 0.5&{} 0.8046&{} 0.5525&{} 0.4600\\ 0.3668&{} 0.3293&{} 0.1954&{} 0.5&{} 0.4557&{} 0.2567\\ 0.6395&{} 0.3636&{} 0.4475&{} 0.5443&{} 0.5&{} 0.5975\\ 0.2003&{} 0.3273&{} 0.5400&{} 0.7433&{} 0.4025&{} 0.5 \end{matrix} \right) \\ P^{(5,2)}= & {} \left( \begin{matrix} 0.5&{} 0.6210&{} 0.4500&{} 0.5768&{} 0.5310&{} 0.5541\\ 0.3790&{} 0.5&{} 0.7124&{} 0.3109&{} 0.3860&{} 0.6754\\ 0.5500&{} 0.2876&{} 0.5&{} 0.2845&{} 0.6010&{} 0.5345\\ 0.4232&{} 0.6891&{} 0.7155&{} 0.5&{} 0.3357&{} 0.4907\\ 0.4690&{} 0.6140&{} 0.3990&{} 0.6643&{} 0.5&{} 0.6852\\ 0.4459&{} 0.3246&{} 0.4655&{} 0.5093&{} 0.3148&{} 0.5 \end{matrix} \right) \\ P^{(6,2)}= & {} \left( \begin{matrix} 0.5&{} 0.6411&{} 0.4562&{} 0.4847&{} 0.6253&{} 0.7293\\ 0.3589&{} 0.5&{} 0.5975&{} 0.6854&{} 0.5979&{} 0.6322\\ 0.5438&{} 0.4025&{} 0.5&{} 0.6664&{} 0.6386&{} 0.4373\\ 0.5153&{} 0.3146&{} 0.3336&{} 0.5&{} 0.6066&{} 0.4561\\ 0.3747&{} 0.4021&{} 0.3614&{} 0.3934&{} 0.5&{} 0.6808\\ 0.2707&{} 0.3678&{} 0.5627&{} 0.5439&{} 0.3192&{} 0.5 \end{matrix} \right) \\ P^{(7,2)}= & {} \left( \begin{matrix} 0.5&{} 0.7950&{} 0.5414&{} 0.4659&{} 0.5106&{} 0.7324\\ 0.2050&{} 0.5&{} 0.3869&{} 0.5605&{} 0.6790&{} 0.7058\\ 0.4586&{} 0.6131&{} 0.5&{} 0.7403&{} 0.6828&{} 0.7136\\ 0.5341&{} 0.4395&{} 0.2597&{} 0.5&{} 0.4223&{} 0.5886\\ 0.4894&{} 0.3210&{} 0.3172&{} 0.5777&{} 0.5&{} 0.2499\\ 0.2676&{} 0.2942&{} 0.2864&{} 0.4114&{} 0.7501&{} 0.5 \end{matrix} \right) \\ P^{(8,2)}= & {} \left( \begin{matrix} 0.5&{} 0.6757&{} 0.5064&{} 0.6063&{} 0.4466&{} 0.3118\\ 0.3243&{} 0.5&{} 0.5723&{} 0.7142&{} 0.6173&{} 0.5238\\ 0.4936&{} 0.4277&{} 0.5&{} 0.5645&{} 0.6491&{} 0.7040\\ 0.3937&{} 0.2858&{} 0.4355&{} 0.5&{} 0.5790&{} 0.8434\\ 0.5534&{} 0.3827&{} 0.3509&{} 0.4210&{} 0.5&{} 0.7104\\ 0.6882&{} 0.4762&{} 0.2960&{} 0.1566&{} 0.2896&{} 0.5 \end{matrix} \right) \end{aligned}$$

Appendix C: Computation process when Dong et al’s approach is applied

C1. Experts’ adjusted preference relations and MMEMs in round 2.

$$\begin{aligned} P^{(1,2)}= & {} \left( \begin{matrix} 0.5&{} 0.6&{} 0.4958&{} 0.8105&{} 0.4&{} 0.9\\ 0.4&{} 0.5&{} 0.7250&{} 0.5683&{} 0.9&{} 0.6726\\ 0.5042&{} 0.2750&{} 0.5&{} 0.5966&{} 0.5994&{} 0.6570\\ 0.1895&{} 0.4317&{} 0.4034&{} 0.5&{} 0.5714&{} 0.3\\ 0.6&{} 0.1&{} 0.4006&{} 0.4286&{} 0.5&{} 0.6887\\ 0.1&{} 0.3274&{} 0.3430&{} 0.7&{} 0.3113&{} 0.5 \end{matrix} \right) \\ P^{(2,2)}= & {} \left( \begin{matrix} 0.5&{} 0.5969&{} 0.8094&{} 0.5896&{} 0.4&{} 0.6191\\ 0.4031&{} 0.5&{} 0.5649&{} 0.4&{} 0.6021&{} 0.6771\\ 0.1906&{} 0.4351&{} 0.5&{} 0.7&{} 0.3&{} 0.6679\\ 0.4104&{} 0.6&{} 0.3&{} 0.5&{} 0.8013&{} 0.9\\ 0.6&{} 0.3979&{} 0.7&{} 0.1987&{} 0.5&{} 0.2987\\ 0.3809&{} 0.3229&{} 0.3321&{} 0.1&{} 0.7013&{} 0.5 \end{matrix} \right) \\ P^{(3,2)}= & {} \left( \begin{matrix} 0.5&{} 0.5925&{} 0.2006&{} 0.5152&{} 0.4695&{} 0.9\\ 0.4075&{} 0.5&{} 0.1400&{} 0.2500&{} 0.1700&{} 0.7305\\ 0.7994&{} 0.8600&{} 0.5&{} 0.7323&{} 0.6786&{} 0.9729\\ 0.4848&{} 0.7500&{} 0.2677&{} 0.5&{} 0.5617&{} 0.9300\\ 0.5305&{} 0.8300&{} 0.3214&{} 0.4383&{} 0.5&{} 0.9194\\ 0.1&{} 0.2695&{} 0.0271&{} 0.0700&{} 0.0806&{} 0.5 \end{matrix} \right) \\ P^{(4,2)}= & {} \left( \begin{matrix} 0.5&{} 0.2919&{} 0.4600&{} 0.7300&{} 0.2700&{} 0.6742\\ 0.7081&{} 0.5&{} 0.7300&{} 0.7095&{} 0.7900&{} 0.8213\\ 0.5400&{} 0.2700&{} 0.5&{} 0.6842&{} 0.2118&{} 0.4556\\ 0.2700&{} 0.2905&{} 0.3158&{} 0.5&{} 0.1097&{} 0.6056\\ 0.7300&{} 0.2100&{} 0.7882&{} 0.8903&{} 0.5&{} 0.5400\\ 0.3258&{} 0.1787&{} 0.5444&{} 0.3944&{} 0.4600&{} 0.5 \end{matrix} \right) \\ P^{(5,2)}= & {} \left( \begin{matrix} 0.5&{} 0.6522&{} 0.4869&{} 0.1353&{} 0.6012&{} 0.4\\ 0.3478&{} 0.5&{} 0.8&{} 0.5533&{} 0.3&{} 0.7\\ 0.5131&{} 0.2&{} 0.5&{} 0.5500&{} 0.6&{} 0.6726\\ 0.8647&{} 0.4467&{} 0.4500&{} 0.5&{} 0.9&{} 0.6\\ 0.3988&{} 0.7&{} 0.4&{} 0.1&{} 0.5&{} 0.7018\\ 0.6&{} 0.3&{} 0.3274&{} 0.4&{} 0.2982&{} 0.5 \end{matrix} \right) \\ P^{(6,2)}= & {} \left( \begin{matrix} 0.5&{} 0.8&{} 0.6500&{} 0.9142&{} 0.7104&{} 0.6268\\ 0.2&{} 0.5&{} 0.6&{} 0.7&{} 0.2898&{} 0.5500\\ 0.3500&{} 0.4&{} 0.5&{} 0.6&{} 0.6212&{} 0.6734\\ 0.0858&{} 0.3&{} 0.4&{} 0.5&{} 0.5568&{} 0.3000\\ 0.2896&{} 0.7102&{} 0.3788&{} 0.4432&{} 0.5&{} 0.7\\ 0.3732&{} 0.4500&{} 0.3266&{} 0.7000&{} 0.3&{} 0.5 \end{matrix} \right) \\ P^{(7,2)}= & {} \left( \begin{matrix} 0.5&{} 0.4400&{} 0.5029&{} 0.8100&{} 0.7600&{} 0.6915\\ 0.5600&{} 0.5&{} 0.5801&{} 0.5937&{} 0.7900&{} 0.9136\\ 0.4971&{} 0.4199&{} 0.5&{} 0.9000&{} 0.8768&{} 0.9500\\ 0.1900&{} 0.4063&{} 0.1000&{} 0.5&{} 0.5749&{} 0.5939\\ 0.2400&{} 0.2100&{} 0.1232&{} 0.4251&{} 0.5&{} 0.7767\\ 0.3085&{} 0.0864&{} 0.0500&{} 0.4061&{} 0.2233&{} 0.5 \end{matrix} \right) \\ P^{(8,2)}= & {} \left( \begin{matrix} 0.5&{} 0.2200&{} 0.3800&{} 0.4300&{} 0.5283&{} 0.3451\\ 0.7800&{} 0.5&{} 0.5600&{} 0.7400&{} 0.8500&{} 0.3241\\ 0.6200&{} 0.4400&{} 0.5&{} 0.6846&{} 0.6018&{} 0.7407\\ 0.5700&{} 0.2600&{} 0.3154&{} 0.5&{} 0.5625&{} 0.9\\ 0.4717&{} 0.1500&{} 0.3982&{} 0.4375&{} 0.5&{} 0.7740\\ 0.6549&{} 0.6759&{} 0.2593&{} 0.1&{} 0.2260&{} 0.5 \end{matrix} \right) \end{aligned}$$
$$\begin{aligned} V^{(1,2)}=\left( \begin{matrix} null &{} null &{} null\\ 88&{} 94&{} 99\\ 96&{} 93&{} 93\\ 98&{} 93&{} 89\\ 98&{} 89&{} 99\\ 90&{} 97&{} 99\\ 86&{} 93&{} 100\\ 90&{} 100&{}87 \end{matrix} \right) V^{(2,2)}=\left( \begin{matrix} 87&{} 98&{} 95\\ null &{} null &{} null \\ 95&{} 88&{} 99\\ 96&{} 85&{} 97\\ 94&{} 92&{} 88\\ 85&{} 93&{} 96\\ 87&{} 89&{} 93\\ 99&{} 98&{} 97 \end{matrix} \right) \end{aligned}$$
$$\begin{aligned} V^{(3,2)}=\left( \begin{matrix} 85&{} 86&{} 85\\ 89&{} 86&{} 99\\ null &{} null &{} null\\ 93&{} 85&{} 96\\ 87&{} 99&{} 86\\ 86&{} 92&{} 91\\ 92&{} 97&{} 97\\ 99&{} 87&{} 85 \end{matrix} \right) V^{(4,2)}=\left( \begin{matrix} 89&{} 88&{} 87\\ 96&{} 89&{} 96\\ 89&{} 90&{} 87\\ null&{} null&{} null\\ 93&{} 94&{} 97\\ 99&{} 89&{} 91\\ 89&{} 98&{} 98\\ 94&{} 99&{} 85 \end{matrix} \right) \end{aligned}$$
$$\begin{aligned} V^{(5,2)}=\left( \begin{matrix} 92&{} 98&{} 93\\ 92&{} 95&{} 89\\ 91&{} 100&{} 85\\ 89&{} 92&{} 86\\ null&{}null&{}null\\ 95&{} 85&{} 95\\ 92&{} 99&{} 95\\ 86&{} 93&{} 85 \end{matrix} \right) V^{(6,2)}=\left( \begin{matrix} 96&{} 92&{} 85\\ 92&{} 99&{} 89\\ 99&{} 89&{} 96\\ 85&{} 96&{} 99\\ 87&{} 94&{} 96\\ null&{} null&{} null\\ 94&{} 96&{} 97\\ 95&{} 96&{} 96 \end{matrix} \right) \end{aligned}$$
$$\begin{aligned} V^{(7,2)}=\left( \begin{matrix} 95&{} 98&{} 100\\ 89&{} 97&{} 99\\ 86&{} 96&{} 92\\ 93&{} 95&{} 96\\ 94&{} 98&{} 92\\ 87&{} 94&{} 90\\ null&{} null&{} null\\ 89&{} 87&{} 99 \end{matrix} \right) V^{(8,2)}=\left( \begin{matrix} 83&{} 98&{} 94\\ 85&{} 96&{} 95\\ 93&{} 96&{} 83\\ 94&{} 96&{} 93\\ 95&{} 95&{} 98\\ 95&{} 93&{} 96\\ 95&{} 82&{} 97\\ null &{} null &{} null \end{matrix} \right) \end{aligned}$$

C2. Experts’ adjusted preference relations and MMEMs in round 3.

$$\begin{aligned} P^{(1,3)}= & {} \left( \begin{matrix} 0.5&{} 0.5220&{} 0.4958&{} 0.8105&{} 0.5282&{} 0.6467\\ 0.4780&{} 0.5&{} 0.7250&{} 0.5683&{} 0.5721&{} 0.6726\\ 0.5042&{} 0.2750&{} 0.5&{} 0.5885&{} 0.5994&{}0.6516\\ 0.1895&{} 0.4317&{} 0.4115&{} 0.5&{} 0.5714&{} 0.2925\\ 0.4718&{} 0.4279&{} 0.4006&{} 0.4286&{} 0.5&{} 0.6887\\ 0.3533&{} 0.3274&{} 0.3484&{} 0.7075&{} 0.3113&{} 0.5 \end{matrix} \right) \\ P^{(2,3)}= & {} \left( \begin{matrix} 0.5&{} 0.5972&{} 0.4956&{} 0.5864&{} 0.4000&{} 0.6191\\ 0.4028&{} 0.5&{} 0.5649&{} 0.4000&{} 0.5913&{} 0.6771\\ 0.5044&{} 0.4351&{} 0.5&{} 0.7000&{} 0.5714&{} 0.6679\\ 0.4136&{} 0.6000&{} 0.3000&{} 0.5&{} 0.5636&{} 0.9218\\ 0.6000&{} 0.4087&{} 0.4286&{} 0.4364&{} 0.5&{} 0.2925\\ 0.3809&{} 0.3229&{} 0.3321&{} 0.0782&{} 0.7075&{} 0.5 \end{matrix} \right) \\ P^{(3,3)}= & {} \left( \begin{matrix} 0.5&{} 0.5973&{} 0.2006&{} 0.5152&{} 0.4938&{} 0.6386\\ 0.4027&{} 0.5&{} 0.1400&{} 0.2334&{} 0.1700&{} 0.7305\\ 0.7994&{} 0.8600&{} 0.5&{} 0.6817&{} 0.5568&{} 0.9729\\ 0.4848&{} 0.7666&{} 0.3183&{} 0.5&{} 0.5612&{} 0.9300\\ 0.5062&{} 0.8300&{} 0.4432&{} 0.4388&{} 0.5&{} 0.9194\\ 0.3614&{} 0.2695&{} 0.0271&{} 0.0700&{} 0.0806&{} 0.5 \end{matrix} \right) \\ P^{(4,3)}= & {} \left( \begin{matrix} 0.5&{} 0.2839&{} 0.4593&{} 0.6206&{} 0.2700&{} 0.6457\\ 0.7161&{} 0.5&{} 0.7315&{} 0.5636&{} 0.6236&{} 0.8313\\ 0.5407&{} 0.2685&{} 0.5&{} 0.6821&{} 0.2118&{} 0.4385\\ 0.3794&{} 0.4364&{} 0.3179&{} 0.5&{} 0.2381&{} 0.6056\\ 0.7300&{} 0.3764&{} 0.7882&{} 0.7619&{} 0.5&{} 0.5759\\ 0.3543&{} 0.1687&{} 0.5615&{} 0.3944&{} 0.4241&{} 0.5 \end{matrix} \right) \\ P^{(5,3)}= & {} \left( \begin{matrix} 0.5&{} 0.6432&{} 0.4869&{} 0.6391&{} 0.5986&{} 0.4000\\ 0.3568&{} 0.5&{} 0.8075&{} 0.5670&{} 0.2916&{} 0.7000\\ 0.5131&{} 0.1925&{} 0.5&{} 0.6854&{} 0.5957&{} 0.6694\\ 0.3609&{} 0.4330&{} 0.3146&{} 0.5&{} 0.9000&{} 0.5996\\ 0.4014&{} 0.7084&{} 0.4043&{} 0.1000&{} 0.5&{} 0.6682\\ 0.6000&{} 0.3000&{} 0.3306&{} 0.4004&{} 0.3318&{} 0.5 \end{matrix} \right) \\ P^{(6,3)}= & {} \left( \begin{matrix} 0.5&{} 0.8261&{} 0.4920&{} 0.7864&{} 0.5108&{} 0.6490\\ 0.1739&{} 0.5&{} 0.6000&{} 0.5572&{} 0.5783&{} 0.5420\\ 0.5080&{} 0.4000&{} 0.5&{} 0.6833&{} 0.6212&{} 0.6734\\ 0.2136&{} 0.4428&{} 0.3167&{} 0.5&{} 0.5568&{} 0.2857\\ 0.4892&{} 0.4217&{} 0.3788&{} 0.4432&{} 0.5&{} 0.7003\\ 0.3510&{} 0.4580&{} 0.3266&{} 0.7143&{} 0.2997&{} 0.5 \end{matrix} \right) \\ P^{(7,3)}= & {} \left( \begin{matrix} 0.5&{} 0.4400&{} 0.5035&{} 0.8100&{} 0.7600&{} 0.6915\\ 0.5600&{} 0.5&{} 0.5801&{} 0.5948&{} 0.8004&{} 0.9136\\ 0.4965&{} 0.4199&{} 0.5&{} 0.8968&{} 0.8808&{} 0.7006\\ 0.1900&{} 0.4052&{} 0.1032&{} 0.5&{} 0.5749&{} 0.5939\\ 0.2400&{} 0.1996&{} 0.1192&{} 0.4251&{} 0.5&{} 0.7767\\ 0.3085&{} 0.0864&{} 0.2994&{} 0.4061&{} 0.2233&{} 0.5 \end{matrix} \right) \\ P^{(8,3)}= & {} \left( \begin{matrix} 0.5&{} 0.5467&{} 0.3800&{} 0.4300&{} 0.5283&{} 0.3451\\ 0.4533&{} 0.5&{} 0.5600&{} 0.7436&{} 0.8500&{} 0.6903\\ 0.6200&{} 0.4400&{} 0.5&{} 0.6829&{} 0.6040&{} 0.7207\\ 0.5700&{} 0.2564&{} 0.3171&{} 0.5&{} 0.5617&{} 0.6346\\ 0.4717&{} 0.1500&{} 0.3960&{} 0.4383&{} 0.5&{} 0.7199\\ 0.6549&{} 0.3097&{} 0.2793&{} 0.3654&{} 0.2801&{} 0.5 \end{matrix} \right) \end{aligned}$$
$$\begin{aligned} V^{(1,3)}=\left( \begin{matrix} null &{} null &{} null\\ 88&{} 74&{} 99\\ 96&{} 73&{} 73\\ 98&{} 73&{} 89\\ 98&{} 69&{} 79\\ 90&{} 77&{} 99\\ 86&{} 73&{} 100\\ 90&{} 80&{}67 \end{matrix} \right) V^{(2,3)}=\left( \begin{matrix} 87&{} 78&{} 95\\ null &{} null &{} null \\ 95&{}68&{} 79\\ 96&{} 65&{} 97\\ 94&{} 72&{} 68\\ 85&{} 73&{} 96\\ 87&{} 69&{} 93\\ 99&{} 78&{} 77 \end{matrix} \right) \end{aligned}$$
$$\begin{aligned} V^{(3,3)}=\left( \begin{matrix} 85&{} 66&{} 85\\ 89&{} 66&{} 99\\ null &{} null &{} null\\ 93&{} 65&{} 96\\ 87&{} 79&{} 66\\ 86&{} 72&{} 91\\ 92&{} 77&{} 97\\ 99&{} 67&{} 85 \end{matrix} \right) V^{(4,3)}=\left( \begin{matrix} 89&{} 68&{} 87\\ 96&{} 69&{} 96\\ 89&{} 70&{} 87\\ null&{} null&{} null\\ 93&{} 74&{} 77\\ 99&{} 69&{} 91\\ 89&{} 78&{} 98\\ 94&{} 79&{} 65 \end{matrix} \right) \end{aligned}$$
$$\begin{aligned} V^{(5,3)}=\left( \begin{matrix} 92&{} 78&{} 93\\ 92&{}75&{} 89\\ 91&{} 80&{} 65\\ 89&{} 72&{} 86\\ null&{}null&{}null\\ 95&{} 65&{} 95\\ 92&{} 79&{} 95\\ 86&{} 73&{} 65 \end{matrix} \right) V^{(6,3)}=\left( \begin{matrix} 96&{}72&{} 85\\ 92&{} 79&{} 89\\ 99&{} 69&{} 76\\ 85&{} 76&{} 99\\ 87&{} 74&{} 76\\ null&{} null&{} null\\ 94&{} 76&{} 97\\ 95&{} 76&{} 76 \end{matrix} \right) \end{aligned}$$
$$\begin{aligned} V^{(7,3)}=\left( \begin{matrix} 95&{} 78&{} 100\\ 89&{} 77&{} 99\\ 86&{} 76&{} 72\\ 93&{} 75&{} 96\\ 94&{} 78&{} 72\\ 87&{} 74&{} 90\\ null&{} null&{} null\\ 89&{} 67&{} 79 \end{matrix} \right) V^{(8,3)}=\left( \begin{matrix} 83&{} 78&{} 94\\ 85&{} 76&{} 95\\ 93&{} 76&{} 63\\ 94&{} 76&{} 93\\ 95&{} 75&{} 78\\ 95&{} 73&{} 96\\ 95&{} 62&{} 97\\ null &{} null &{} null \end{matrix} \right) \end{aligned}$$

C3. Experts’ adjusted preference relations and MMEMs in round 4.

$$\begin{aligned} P^{(1,4)}= & {} \left( \begin{matrix} 0.5&{} 0.5216&{} 0.4958&{} 0.8105&{} 0.5198&{} 0.6467\\ 0.4784&{} 0.5&{} 0.7250&{} 0.5683&{} 0.5724&{} 0.7193\\ 0.5042&{} 0.2750&{} 0.5&{} 0.5885&{} 0.5800&{} 0.6850\\ 0.1895&{} 0.4317&{} 0.4115&{} 0.5&{} 0.5719&{} 0.4713\\ 0.4802&{} 0.4276&{} 0.4200&{} 0.4281&{} 0.5&{} 0.6887\\ 0.3533&{} 0.2807&{} 0.3150&{} 0.5287&{} 0.3113&{} 0.5 \end{matrix} \right) \\ P^{(2,4)}= & {} \left( \begin{matrix} 0.5&{} 0.5972&{} 0.4376&{} 0.5864&{} 0.3985&{} 0.6227\\ 0.4028&{} 0.5&{} 0.5649&{} 0.4000&{} 0.5914&{} 0.6736\\ 0.5624&{} 0.4351&{} 0.5&{} 0.7000&{} 0.5714&{} 0.6679\\ 0.4136&{} 0.6000&{} 0.3000&{} 0.5&{} 0.5633&{} 0.9218\\ 0.6015&{} 0.4086&{} 0.4286&{} 0.4367&{} 0.5&{} 0.2925\\ 0.3773&{} 0.3264&{} 0.3321&{} 0.0782&{} 0.7075&{} 0.5 \end{matrix} \right) \\ P^{(3,4)}= & {} \left( \begin{matrix} 0.5&{} 0.5973&{} 0.3246&{} 0.5152&{} 0.4938&{} 0.6386\\ 0.4027&{} 0.5&{} 0.1018&{} 0.2962&{} 0.1700&{} 0.7305\\ 0.6754&{} 0.8982&{} 0.5&{} 0.6816&{} 0.5607&{} 0.9968\\ 0.4848&{}0.7038&{} 0.3184&{} 0.5&{} 0.5612&{} 0.9401\\ 0.5062&{} 0.8300&{} 0.4393&{} 0.4388&{} 0.5&{} 0.8228\\ 0.3614&{} 0.2695&{} 0.0032&{} 0.0599&{} 0.1772&{} 0.5 \end{matrix} \right) \\ P^{(4,4)}= & {} \left( \begin{matrix} 0.5&{} 0.2839&{} 0.4607&{} 0.6370&{} 0.2700&{} 0.6457\\ 0.7161&{} 0.5&{} 0.7336&{} 0.5636&{} 0.6236&{} 0.8078\\ 0.5393&{} 0.2664&{} 0.5 &{}0.6821&{} 0.4025&{} 0.4143\\ 0.3630&{} 0.4364&{} 0.3179&{} 0.5&{} 0.2148&{} 0.6057\\ 0.7300&{}0.3764&{} 0.5975&{} 0.7852&{} 0.5&{} 0.6736\\ 0.3543&{} 0.1922&{} 0.5857&{} 0.3943&{} 0.3264&{} 0.5 \end{matrix} \right) \\ P^{(5,4)}= & {} \left( \begin{matrix} 0.5&{} 0.6432&{} 0.4413&{} 0.6530&{} 0.5986&{} 0.3970\\ 0.3568&{} 0.5&{} 0.8075&{} 0.5670&{} 0.2818&{} 0.7192\\ 0.5587&{} 0.1925&{} 0.5&{} 0.6874&{} 0.5957&{} 0.6694\\ 0.3470&{} 0.4330&{} 0.3126&{} 0.5&{} 0.9000&{} 0.5991\\ 0.4014&{}0.7182&{} 0.4043&{} 0.1000&{} 0.5&{} 0.6682\\ 0.6030&{} 0.2808&{} 0.3306&{} 0.4009&{} 0.3318&{} 0.5 \end{matrix} \right) \\ P^{(6,4)}= & {} \left( \begin{matrix} 0.5&{} 0.8261&{} 0.4933&{} 0.7670&{} 0.5108&{} 0.6503\\ 0.1739&{} 0.5&{} 0.5949&{} 0.5344&{} 0.5665&{} 0.5420\\ 0.5067&{} 0.4051&{} 0.5&{} 0.6826&{} 0.6216&{} 0.6734\\ 0.2330&{} 0.4656&{} 0.3174&{} 0.5&{} 0.5604&{} 0.4299\\ 0.4892&{} 0.4335&{} 0.3784&{} 0.4396&{} 0.5&{} 0.6632\\ 0.3497&{} 0.4580&{} 0.3266&{} 0.5701&{} 0.3368&{} 0.5 \end{matrix} \right) \\ P^{(7,4)}= & {} \left( \begin{matrix} 0.5&{} 0.4400&{} 0.5035&{} 0.6509&{} 0.4935&{} 0.6916\\ 0.5600&{} 0.5&{} 0.5798&{} 0.5990&{} 0.5520&{} 0.9136\\ 0.4965&{} 0.4202&{} 0.5&{} 0.6907&{} 0.8924&{} 0.7006\\ 0.3491&{} 0.4010&{} 0.3093&{} 0.5&{} 0.5749&{} 0.5939\\ 0.5065&{} 0.4480&{} 0.1076&{} 0.4251&{} 0.5&{} 0.7767\\ 0.3084&{} 0.0864&{} 0.2994&{} 0.4061&{} 0.2233&{} 0.5 \end{matrix} \right) \\ P^{(8,4)}= & {} \left( \begin{matrix} 0.5&{} 0.5467&{} 0.3790&{} 0.4300&{} 0.5283&{} 0.3389\\ 0.4533&{} 0.5&{} 0.5600&{} 0.7479&{} 0.8500&{} 0.7181\\ 0.6210&{} 0.4400&{} 0.5&{} 0.6995&{} 0.6040&{} 0.6813\\ 0.5700&{} 0.2521&{} 0.3005&{} 0.5&{} 0.5667&{} 0.6374\\ 0.4717&{} 0.1500&{} 0.3960&{} 0.4333&{} 0.5&{} 0.6645\\ 0.6611&{} 0.2819&{} 0.3187&{} 0.3626&{} 0.3355&{} 0.5 \end{matrix} \right) \end{aligned}$$
$$\begin{aligned} V^{(1,4)}=\left( \begin{matrix} null &{} null &{} null\\ 88&{} 54&{} 99\\ 96&{} 53&{} 53\\ 98&{} 53&{} 89\\ 98&{} 49&{} 79\\ 90&{} 77&{} 99\\ 86&{} 53&{} 100\\ 90&{} 80&{}67 \end{matrix} \right) V^{(2,4)}=\left( \begin{matrix} 87&{} 78&{} 95\\ null &{} null &{} null \\ 95&{}48&{} 59\\ 96&{} 45&{} 97\\ 94&{} 52&{} 68\\ 85&{} 73&{} 96\\ 87&{} 49&{} 93\\ 99&{} 78&{} 77 \end{matrix} \right) \end{aligned}$$
$$\begin{aligned} V^{(3,4)}=\left( \begin{matrix} 85&{} 66&{} 85\\ 89&{} 46&{} 99\\ null &{} null &{} null\\ 93&{} 45&{} 96\\ 87&{} 59&{} 66\\ 86&{} 72&{} 91\\ 92&{} 57&{} 97\\ 99&{} 67&{} 85 \end{matrix} \right) V^{(4,4)}=\left( \begin{matrix} 89&{} 68&{} 87\\ 96&{} 49&{} 96\\ 89&{} 50&{} 67\\ null&{} null&{} null\\ 93&{} 54&{} 77\\ 99&{} 69&{} 91\\ 89&{} 58&{} 98\\ 94&{} 79&{} 65 \end{matrix} \right) \end{aligned}$$
$$\begin{aligned} V^{(5,4)}=\left( \begin{matrix} 92&{} 78&{} 93\\ 92&{}55&{} 89\\ 91&{} 60&{} 45\\ 89&{} 52&{} 86\\ null&{}null&{}null\\ 95&{} 65&{} 95\\ 92&{} 59&{} 95\\ 86&{} 73&{} 65 \end{matrix} \right) V^{(6,4)}=\left( \begin{matrix} 96&{}72&{} 85\\ 92&{} 59&{} 89\\ 99&{} 49&{} 56\\ 85&{} 56&{} 99\\ 87&{} 54&{} 76\\ null&{} null&{} null\\ 94&{} 56&{} 97\\ 95&{} 76&{} 76 \end{matrix} \right) \end{aligned}$$
$$\begin{aligned} V^{(7,4)}=\left( \begin{matrix} 95&{} 78&{} 100\\ 89&{} 57&{} 99\\ 86&{} 56&{} 52\\ 93&{} 55&{} 96\\ 94&{} 58&{} 72\\ 87&{} 74&{} 90\\ null&{} null&{} null\\ 89&{} 67&{} 79 \end{matrix} \right) V^{(8,4)}=\left( \begin{matrix} 83&{} 78&{} 94\\ 85&{} 56&{} 95\\ 93&{} 56&{} 43\\ 94&{} 56&{} 93\\ 95&{} 55&{} 78\\ 95&{} 73&{} 96\\ 95&{} 42&{} 97\\ null&{} null&{} null\\ \end{matrix} \right) \end{aligned}$$

C4. Collective preference and consensus degree.

In round 1, the collective preference is,

$$\begin{aligned} P^{(c,1)}=\left( \begin{matrix} 0.5&{} 0.5375&{} 0.5013&{} 0.5901&{} 0.5294&{} 0.6386\\ 0.4625&{} 0.5&{} 0.5661&{} 0.5710&{} 0.6128&{} 0.6741\\ 0.4987&{} 0.4339&{} 0.5&{} 0.6853&{} 0.6037&{} 0.6635\\ 0.4099&{} 0.4290&{} 0.3147&{} 0.5&{} 0.5637&{} 0.5940\\ 0.4706&{} 0.3872&{} 0.3963&{} 0.4363&{} 0.5&{} 0.6820\\ 0.3614&{} 0.3259&{} 0.3365&{} 0.4060&{} 0.3168&{} 0.5 \end{matrix} \right) \end{aligned}$$

.

The non-cooperative behavior matrix is,

$$\begin{aligned} NC^{(1)}=\left( \begin{matrix} 0 &{} 0 &{} 0 \\ 0 &{} 0 &{} 0 \\ 0 &{} 0 &{} 0 \\ 0 &{} 0 &{} 0 \\ 0 &{} 0 &{} 0 \\ 0 &{} 0 &{} 0 \\ 0 &{} 0 &{} 0 \\ 0 &{} 0 &{} 0 \\ \end{matrix} \right) \end{aligned}$$

The consensus level reaches \(cl^{1}=0.7284\)

In round 2, the collective preference matrix is,

$$\begin{aligned} P^{(c,2)}=\left( \begin{matrix} 0.5&{} 0.5375&{} 0.5013&{} 0.5901&{} 0.5294&{} 0.6386\\ 0.4625&{} 0.5&{} 0.5661&{} 0.5710&{} 0.6128&{} 0.6741\\ 0.4987&{} 0.4339&{} 0.5&{} 0.6853&{} 0.6037&{} 0.6635\\ 0.4099&{} 0.4290&{} 0.3147&{} 0.5&{} 0.5637&{} 0.5940\\ 0.4706&{} 0.3872&{} 0.3963&{} 0.4363&{} 0.5&{} 0.6820\\ 0.3614&{} 0.3259&{} 0.3365&{} 0.4060&{} 0.3168&{} 0.5 \end{matrix} \right) \end{aligned}$$

The non-cooperative matrix is,

$$\begin{aligned} NC^{(2)}=\left( \begin{matrix} 0 &{} 0 &{} 0 \\ 0 &{} 0 &{} 0 \\ 0 &{} 0 &{} 0 \\ 0 &{} 0 &{} 0 \\ 0 &{} 0 &{} 0 \\ 0 &{} 0 &{} 0 \\ 0 &{} 0 &{} 0 \\ 0 &{} 0 &{} 0 \\ \end{matrix} \right) \end{aligned}$$

The consensus degree reaches \(cl^{2}=0.7721\).

In round 3, the collective preference matrix is,

$$\begin{aligned} P^{(c,3)}=\left( \begin{matrix} 0.5&{} 0.5253&{} 0.5038&{} 0.6253&{} 0.5176&{} 0.6471\\ 0.4747&{} 0.5&{} 0.5912&{} 0.5663&{} 0.5918&{} 0.6773\\ 0.4962&{} 0.4088&{} 0.5&{} 0.6822&{} 0.5593&{} 0.7215\\ 0.3747&{} 0.4337&{} 0.3178&{} 0.5&{} 0.5772&{} 0.6355\\ 0.4824&{} 0.4082&{} 0.4407&{} 0.4228&{} 0.5&{} 0.6702\\ 0.3529&{} 0.3227&{} 0.2785&{} 0.3645&{} 0.3298&{} 0.5 \end{matrix} \right) \end{aligned}$$

The non-cooperative matrix is,

$$\begin{aligned} NC^{(3)}=\left( \begin{matrix} 1 &{} 0 &{} 0 \\ 1 &{} 0 &{} 0 \\ 1 &{} 1 &{} 0 \\ 1 &{} 0 &{} 0 \\ 1 &{} 0 &{} 0 \\ 1 &{} 1 &{} 0 \\ 1 &{} 0 &{} 0 \\ 1 &{} 1 &{} 0 \\ \end{matrix} \right) \end{aligned}$$

The consensus degree reaches \(cl^{3}=0.8287\).

In round 4, the collective preference matrix is,

$$\begin{aligned} P^{(c,4)}=\left( \begin{matrix} 0.5&{} 0.5585&{} 0.4427&{} 0.6522&{} 0.5122&{} 0.5779\\ 0.4415&{} 0.5&{} 0.5952&{} 0.5346&{} 0.5674&{} 0.7176\\ 0.5573&{} 0.4048&{} 0.5&{} 0.6995&{} 0.5818&{} 0.6833\\ 0.3478&{} 0.4654&{} 0.3005&{} 0.5&{} 0.5663&{} 0.5991\\ 0.4878&{} 0.4326&{} 0.4182&{} 0.4337&{} 0.5&{} 0.6655\\ 0.4221&{} 0.2824&{} 0.3167&{} 0.4009&{} 0.3345&{} 0.5 \end{matrix} \right) \end{aligned}$$

The non-cooperative behavior matrix is,

$$\begin{aligned} NC^{(4)}=\left( \begin{matrix} 0 &{} 0 &{} 0 \\ 1 &{} 0 &{} 0 \\ 1 &{} 1 &{} 0 \\ 1 &{} 0 &{} 0 \\ 1 &{} 0 &{} 0 \\ 0 &{} 0 &{} 0 \\ 1 &{} 0 &{} 0 \\ 0 &{} 0 &{} 0 \\ \end{matrix} \right) \end{aligned}$$

The consensus level reaches \(cl^{4}=0.8517\).

Appendix D: The OWA operator applied in the current work

Definition 3

[48] Suppose that \(\{c_1,c_2,\dots ,c_N\}\) is a set of values to be aggregated, the OWA operator is defined by

$$\begin{aligned} OWA(c_1,c_2,\dots ,c_N)=\sum _{z=1}^{N}\pi _zb_z \end{aligned}$$
(D1)

\(b_k\) is the value of the z-th largest of \(\{c_1,c_2,\dots ,c_N\}\), \(\pi =(\pi _1,\pi _2,\dots ,\pi _N)^T\) is a weight vector, \(\pi _z\in (0,1)\) and \(\sum _{z=1}^{N}\pi _z=1\).

In [33, 34], \(\pi =(\pi _1,\pi _2,\dots ,\pi _N)^T\) can be obtained by linguistic quantifier as below.

$$\begin{aligned} \pi _z=Q\left( \frac{z}{N}\right) -Q\left( \frac{z-1}{N}\right) \end{aligned}$$
(D2)
$$\begin{aligned} Q(z)=\left\{ \begin{array}{ll} 0 &{} z<a \\ \frac{z-a}{b-a}, &{}a<z <b, a,b,z\in (0,1]\\ 1,&{} z>b \end{array}\right. \end{aligned}$$
(D3)

with parameters \(a=0.5\) and \(b=1\).

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, Y., Zhang, X., Rodríguez, R.M. et al. Managing non-cooperative behaviors in consensus reaching processes: a comprehensive self-management weight generation mechanism. Appl Intell 54, 2673–2702 (2024). https://doi.org/10.1007/s10489-024-05281-9

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10489-024-05281-9

Keywords

Navigation