Skip to main content
Log in

A review on collective behavior modeling and simulation: building a link between cognitive psychology and physical action

  • Published:
Applied Intelligence Aims and scope Submit manuscript

Abstract

Collective behavior is a widespread and important phenomenon among human society, biological populations, swarm robots and multi-agents. The mathematical model shows that the collective behavior originates from the simple local interaction rules among the individuals. However, the nature of the interaction is rarely understood, and most models and theories only rely on physical assumptions. Thus, some researchers look for evidences and concepts to understand collective behavior from social science. To enhance the authenticity of simulation, more dimensions and psychological details of the individual are needed. This paper reviews the traditional physical model and the concept of group psychology. Classical physics models are systematically reviewed, discussed, and analyzed, and simulation methods commonly used in this field are introduced. Physical models can simulate the general collective behavior and have the characteristics of microscopic and macroscopic models. The results show that the traditional physical model can simulate most groups, but it lacks the expression of individual psychological mechanism. Psychological concepts can reveal the internal evolutionary mechanism of collective behavior. In the real world, the cognitive psychology of an individual is dynamic, diverse, and complex. As a result, the individual psychology in the group will change at any time, then the collective behavior will be transformed into the dispersion behavior. Finally, we emphasize some interdisciplinary issues in this field, which can produce a more comprehensive understanding of collective behavior. In future work, the simulation of collective behavior will be developed to be more natural, efficient and realistic, and to produce a multidisciplinary understanding of social aggregation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

Similar content being viewed by others

Data availability

Not applicable.

References

  1. Akiyama M, Sushida T, Ishida S, Haga H (2017) Mathematical model of collective cell migrations based on cell polarity. Develop Growth Differ 59(5):471–490

    Google Scholar 

  2. Aldana M, Dossetti V, Huepe C, Kenkre VM, Larralde H (2007) Phase transitions in systems of self-propelled agents and related network models. Phys Rev Lett 98(9):095702

    Google Scholar 

  3. Alias MA, Buenzli PR (2017) Modeling the effect of curvature on the collective behavior of cells growing new tissue. Biophys J 112(1):193–204

    Google Scholar 

  4. Alnabulsi H, Drury J (2014) Social identification moderates the effect of crowd density on safety at the hajj. Proc Natl Acad Sci 111(25):9091–9096

    Google Scholar 

  5. Askari G, Gordji ME, Park C (2019) The behavioral model and game theory. Palgrave Commun 5(1):1–8

    Google Scholar 

  6. Ayre M, Izzo D, Pettazzi L (2005) Self assembly in space using behaviour based intelligent components. In: Proceedings of the TAROS, Towards Autonomous Robotic Systems, Taros, pp 1–8

  7. Bakar NA, Selamat A (2018) Agent systems verification: systematic literature review and mapping. Appl Intell 48(5):1251–1274

    Google Scholar 

  8. Barberis L, Peruani F (2016) Large-scale patterns in a minimal cognitive flocking model: incidental leaders, nematic patterns, and aggregates. Phys Rev Lett 117(24):248001

    Google Scholar 

  9. Belhadi A, Djenouri Y, Srivastava GD, Jenouri D, JCW L, Fortino G (2021) Deep learning for pedestrian collective behavior analysis in smart cities: a model of group trajectory outlier detection. Inf Fus 65:13–20

    Google Scholar 

  10. Bello-Orgaz G, Mesas RM, Zarco C, Rodriguez V, Cordón O, Camacho D (2020) Marketing analysis of wineries using social collective behavior from users’ temporal activity on twitter. Inf Process Manag 57(5):102220

    Google Scholar 

  11. Bentley RA, O'Brien MJ, Brock WA (2014) Mapping collective behavior in the big-data era. Behav Brain Sci 37(1):63

    Google Scholar 

  12. Bergey K, Spieser K, Davison DE (2007) The psychological dynamics of students in a classroom: Modeling and control strategies based on suggestibility theory. In: 2007 IEEE international conference on control applications. IEEE, pp 658-663

  13. Bhaskar D, Manhart A, Milzman J, Nardini JT, Storey KM, Topaz CM, Ziegelmeier L (2019) Analyzing collective motion with machine learning and topology Chaos: an interdisciplinary. J Nonlinear Sci 29(12):123125

    Google Scholar 

  14. Bickmann J, Wittkowski R (2020) Collective dynamics of active Brownian particles in three spatial dimensions: a predictive field theory. Phys Rev Res 2(3):033241

    Google Scholar 

  15. Blue VJ, Embrechts MJ, Adler JL (1997) Cellular automata modeling of pedestrian movements. In: 1997 IEEE International Conference on Systems, Man, and Cybernetics. Computational Cybernetics and Simulation. IEEE, Orlando, FL, USA, pp 2320–2323

  16. Bode NW, Holl S, Mehner W, Seyfried A (2015) Disentangling the impact of social groups on response times and movement dynamics in evacuations. PLoS One 10(3):e0121227

    Google Scholar 

  17. Bordini RH, El Fallah Seghrouchni A, Hindriks K, Logan B, Ricci A (2020) Agent programming in the cognitive era. Auton Agent Multi-Agent Syst 34(2):1–31

    Google Scholar 

  18. Bosse T, Duell R, Memon ZA, Treur J, Van der Wal CN (2015) Agent-based modeling of emotion contagion in groups. Cogn Comput 7(1):111–136

    Google Scholar 

  19. Brambilla M, Ferrante E, Birattari M, Dorigo M (2013) Swarm robotics: a review from the swarm engineering perspective. Swarm Intell 7(1):1–41

    Google Scholar 

  20. Butail S, Salerno P, Bollt EM, Porfiri M (2015) Classification of collective behavior: a comparison of tracking and machine learning methods to study the effect of ambient light on fish shoaling. Behav Res Methods 47(4):1020–1031

    Google Scholar 

  21. Cambier N, Miletitch R, Frémont V, Dorigo M, Ferrante E, Trianni V (2020) Language evolution in swarm robotics: a perspective. Front Robot AI 7:12

    Google Scholar 

  22. Camci E, Kripalani DR, Ma L, Kayacan E, Khanesar MA (2018) An aerial robot for rice farm quality inspection with type-2 fuzzy neural networks tuned by particle swarm optimization-sliding mode control hybrid algorithm. Swarm Evol Comput 41:1–8

    Google Scholar 

  23. Carbone C, Garibaldi O, Kurt Z (2018) Swarm robotics as a solution to crops inspection for precision agriculture. KnE Eng 3(1):552

    Google Scholar 

  24. Ceron S, O’Keeffe K, Petersen K (2023) Diverse behaviors in non-uniform chiral and non-chiral swarmalators. Nat Commun 14(1):940

    Google Scholar 

  25. Chaté H, Ginelli F, Grégoire G, Raynaud F (2008) Collective motion of self-propelled particles interacting without cohesion. Phys Rev E 77(4):046113

    Google Scholar 

  26. Chen H, Tai X, Wang W (2022) Multi-view subspace clustering with inter-cluster consistency and intra-cluster diversity among views. Appl Intell 52:9239–9255

  27. Chen Z, Zhang HT (2011) No-beacon collective circular motion of jointly connected multi-agents. Automatica 47(9):1929–1937

    MathSciNet  MATH  Google Scholar 

  28. Chenney S (2004) Flow tiles. In: Proceedings of the 2004 ACM SIGGRAPH/Eurographics Symposium on Computer Animation. Eurographics Association, Grenoble, France, pp 233–242

  29. Conradt L, Roper TJ (2009) Conflicts of interest and the evolution of decision sharing. Philos Trans Royal Soc B Biol Sci 364(1518):807–819

    Google Scholar 

  30. Cook CN, Lemanski NJ, Mosqueiro T, Ozturk C, Gadau J, Pinter-Wollman N, Smith BH (2020) Individual learning phenotypes drive collective behavior. Proc Natl Acad Sci 117(30):17949–17956

    Google Scholar 

  31. Costa T, Laan A, Heras FJ, de Polavieja GG (2020) Automated discovery of local rules for desired collective-level behavior through reinforcement learning. Front Phys 8:200

    Google Scholar 

  32. Couzin ID, Krause J, James R, Ruxton GD, Franks NR (2002) Collective memory and spatial sorting in animal groups. J Theor Biol 218(1):1–11

    MathSciNet  Google Scholar 

  33. Cvitanovic C, Colvin RM, Reynolds KJ, Platow MJ (2020) Applying an organizational psychology model for developing shared goals in interdisciplinary research teams. One Earth 2(1):75–83

    Google Scholar 

  34. Dattler D, Fuks G, Heiser J, Moulin E, Perrot A, Yao X, Giuseppone N (2019) Design of collective motions from synthetic molecular switches, rotors, and motors. Chem Rev 120(1):310–433

    Google Scholar 

  35. De Iuliis M, Battegazzorre E, Domaneschi M, Cimellaro GP, Bottino AG (2023) Large scale simulation of pedestrian seismic evacuation including panic behavior. Sustain Cities Soc 94:104527

    Google Scholar 

  36. Destin M, Rheinschmidt-Same M, Richeson JA (2017) Status-based identity: a conceptual approach integrating the social psychological study of socioeconomic status and identity. Perspect Psychol Sci 12(2):270–289

    Google Scholar 

  37. Ding Z, Liang H, Dong Y, Chiclana F, Herrera-Viedma E, Cabrerizo FJ (2016) An opinion control rule with minimum adjustments to support the consensus reaching in bounded confidence model. Procedia Comput Sci 91:617–624

    Google Scholar 

  38. Dogbe C (2012) On the modelling of crowd dynamics by generalized kinetic models. J Math Anal Appl 387:512–532

    MathSciNet  MATH  Google Scholar 

  39. Drury J, Cocking C, Reicher S (2009) Everyone for themselves? A comparative study of crowd solidarity among emergency survivors. Br J Soc Psychol 48(3):487–506

    Google Scholar 

  40. Drury J, Novelli D, Stott C (2015) Managing to avert disaster: explaining collective resilience at an outdoor music event. Eur J Soc Psychol 45(4):533–547

    Google Scholar 

  41. Drury J (2018) The role of social identity processes in mass emergency behaviour: an integrative review. Eur Rev Soc Psychol 29(1):38–81

    Google Scholar 

  42. Durupınar F, Güdükbay U, Aman A, Badler NI (2015) Psychological parameters for crowd simulation: from audiences to mobs. IEEE Trans Vis Comput Graph 22(9):2145–2159

    Google Scholar 

  43. Durupinar F, Pelechano N, Allbeck J, Güdükbay U, Badler NI (2009) How the ocean personality model affects the perception of crowds. IEEE Comput Graph Appl 31(3):22–31

    Google Scholar 

  44. Elgeti J, Winkler RG, Gompper G (2015) Physics of microswimmers-single particle motion and collective behavior: a review. Rep Prog Phys 78(5):056601

    MathSciNet  Google Scholar 

  45. El-Tawil S, Fang J, Aguirre B, Best E (2017) A computational study of the station nightclub fire accounting for social relationships. J Artif Soc Soc Simul 20(4):10

    Google Scholar 

  46. Feliciani C, Nishinari K (2016) An improved cellular automata model to simulate the behavior of high-density crowd and validation by experimental data. Physica A: Stat Mech Appl 451:135–148

    Google Scholar 

  47. Forment M, Rodrigo G (2017) Molecular noise can minimize the collective sensitivity of a clonal heterogeneous cell population. J Theor Biol 416:38–44

    Google Scholar 

  48. Franca RDS, Maria das Gracas BM, Steinberger MB (2009) Proposing a cognitive multi-agent model for the panic in crowds phenomenon. In: 2009 Second International Conference on the Applications of Digital Information and Web Technologies. IEEE, London, UK, pp 737–742

  49. Gao C, Fan Y, Jiang S, Deng Y, Liu J, Li X (2021) Dynamic robustness analysis of a two-layer rail transit network model. IEEE Trans Intell Transp Syst https://doi.org/10.1109/TITS.2021.3058185

  50. Gao C, Liu C, Schenz D, Li X, Zhang Z, Jusup M, Wang Z, Beekman M, Nakagaki T (2019) Does being multi-headed make you better at solving problems? A survey of Physarum-based models and computations. Phys Life Rev 29:1–26

    Google Scholar 

  51. Gao C, Liu J (2017) Network-based modeling for characterizing human collective behaviors during extreme events. IEEE Trans Syst Man, Cybern Syst 47(1):171–183

    Google Scholar 

  52. Garcia-Aunon P, Roldán JJ, Barrientos A (2019) Monitoring traffic in future cities with aerial swarms: developing and optimizing a behavior-based surveillance algorithm. Cogn Syst Res 54:273–286

    Google Scholar 

  53. Gayathri H, Aparna PM, Verma A (2017) A review of studies on understanding crowd dynamics in the context of crowd safety in mass religious gatherings. Int J Disaster Risk Reduct 25:82–91

    Google Scholar 

  54. Gerakakis I, Gavriilidis P, Dourvas NI, Georgoudas IG, Trunfio GA, Sirakoulis GC (2019) Accelerating fuzzy cellular automata for modeling crowd dynamics. J Comput Sci 32:125–140

    Google Scholar 

  55. Gergen KJ (1973) Social psychology as history. J Pers Soc Psychol 26(2):309

    Google Scholar 

  56. Gerling V, Von Mammen S (2016) Robotics for self-organised construction. In: 2016 IEEE 1st International Workshops on Foundations and Applications of Self Systems, IEEE,  Augsburg, Germany, pp 162–167

  57. Giannini JA, Puckett JG (2020) Testing a thermodynamic approach to collective animal behavior in laboratory fish schools. Phys Rev E 101(6):062605

    Google Scholar 

  58. Gigerenzer G (2008) Why heuristics work. Perspect Psychol Sci 3(1):20–29

    Google Scholar 

  59. Gipps PG, Marksjö B (1985) A micro-simulation model for pedestrian flows. Math Comput Simul 27(2–3):95–105

    Google Scholar 

  60. Gödel M, Fischer R, Köster G (2020) Sensitivity Anal Microsc Crowd Simul Algorithm 13(7):162

    Google Scholar 

  61. Goehry C, Nemnes GA, Manolescu A (2015) Collective behavior of molecular dipoles in CH3NH3PbI3. J Phys Chem C 119(34):19674–19680

    Google Scholar 

  62. Golas A, Narain R, Lin MC (2014) Continuum modeling of crowd turbulence. Phys Rev E 90(4):042816

    Google Scholar 

  63. Guttal V, Couzin ID (2010) Social interactions, information use, and the evolution of collective migration. Proc Natl Acad Sci 107(37):16172–16177

    Google Scholar 

  64. Guy SJ, Kim S, Lin MC,  Manocha D (2011) Simulating heterogeneous crowd behaviors using personality trait theory. Proceedings of the 2011 ACM SIGGRAPH/Eurographics Symposium on Computer Animation. Association for Computing Machinery, Vancouver, Canada, pp 43–52

  65. Handegard NO, Boswell KM, Ioannou CC, Leblanc SP, Tjøstheim DB, Couzin ID (2012) The dynamics of coordinated group hunting and collective information transfer among schooling prey. Curr Biol 22(13):1213–1217

    Google Scholar 

  66. Hansen J, Rim S, Fiedler K (2013) Psychological distance and judgments of causal impact. J Exp Soc Psychol 49(6):1184–1189

    Google Scholar 

  67. Hartman C, Benes B (2006) Autonomous boids. Comput Animat Virtual Worlds 17(3–4):199–206

    Google Scholar 

  68. Hartmann D (2010) Adaptive pedestrian dynamics based on geodesics. New J Phys 12:043032

    MATH  Google Scholar 

  69. Helbing D, Buzna L, Johansson A, Werner T (2005) Self-organized pedestrian crowd dynamics: experiments, simulations, and design solutions. Transp Sci 39(1):1–24

    Google Scholar 

  70. Helbing D, Farkas I, Vicsek T (2000) Simulating dynamical features of escape panic. Nature 407(6803):487–490

    Google Scholar 

  71. Hinz RC, de Polavieja GG (2017) Ontogeny of collective behavior reveals a simple attraction rule. Proc Natl Acad Sci 114(9):2295–2300

    Google Scholar 

  72. Hopkins N, Reicher S, Stevenson C, Pandey K, Shankar S, Tewari S (2019) Social relations in crowds: recognition, validation and solidarity. Eur J Soc Psychol 49(6):1283–1297

    Google Scholar 

  73. Hughes RL (2002) A continuum theory for the flow of pedestrians. Transp Res B Methodol 36(6):507–535

    Google Scholar 

  74. Invernizzi E, Ruxton GD (2021) Updating a textbook model of collective behavior: Nest wall building in Temnothorax albipennis. Animal Behav Cogn 8(2):231–239

    Google Scholar 

  75. Jiang H, Xu W, Mao T, Li C, Xia S, Wang Z (2010) Continuum crowd simulation in complex environments. Comput Graph 34(5):537–544

    Google Scholar 

  76. Johansson A, Helbing D, Shukla PK (2007) Specification of the social force pedestrian model by evolutionary adjustment to video tracking data. Adv Complex Syst 10(02):271–288

    MathSciNet  MATH  Google Scholar 

  77. Jolles JW, Boogert NJ, Sridhar VH, Couzin ID, Manica A (2017) Consistent individual differences drive collective behavior and group functioning of schooling fish. Curr Biol 27(18):2862–2868

    Google Scholar 

  78. Kane AA, van Swol LM, Sarmiento-Lawrence IG (2023) Emotional contagion in online groups as a function of valence and status. Comput Hum Behav 139:107543

    Google Scholar 

  79. Kasereka S, Kasoro N, Kyamakya K, Goufo EFD, Chokki AP, Yengo MV (2018) Agent-based modelling and simulation for evacuation of people from a building in case of fire. Procedia Comput Sci 130:10–17

    Google Scholar 

  80. Kerevel YP (2011) The influence of Spanish-language media on Latino public opinion and group consciousness. Soc Sci Q 92(2):509–534

    Google Scholar 

  81. Kim S, Guy SJ, Manocha D, Lin MC (2012) Interactive simulation of dynamic crowd behaviors using general adaptation syndrome theory. In: Proceedings of the ACM SIGGRAPH Symposium on Interactive 3D Graphics and Games. Association for Computing Machinery, Costa Mesa, California, pp 55–62

  82. King AE, Turner MS (2021) Non-local interactions in collective motion. R Soc Open Sci 8(3):201536

    Google Scholar 

  83. Klamer P, Bakker C, Gruis V (2017) Research bias in judgement bias studies-a systematic review of valuation judgement literature. J Prop Res 34(4):285–304

    Google Scholar 

  84. Kleinmeier B, Köster G, Drury J (2020) Agent-based simulation of collective cooperation: from experiment to model. J R Soc Interface 17(171):20200396

    Google Scholar 

  85. Kleinmeier B, Zönnchen B, Gödel M, Köster G (2019) Vadere: an open-source simulation framework to promote interdisciplinary understanding. Collect Dyn 4:1–34

    Google Scholar 

  86. Kolivand H, Rahim MS, Sunar MS, Fata AZA, Wren C (2021) An integration of enhanced social force and crowd control models for high-density crowd simulation. Neural Comput & Applic 33(11):6095–6117

    Google Scholar 

  87. Kotseruba I, Tsotsos JK (2020) 40 years of cognitive architectures: core cognitive abilities and practical applications. Artif Intell Rev 53(1):17–94

    Google Scholar 

  88. LeBon G (1960) The crowd. Viking Press, New York

    Google Scholar 

  89. Lee RM, Vitolo MI, Losert W, Martin SS (2021) Distinct roles of tumor associated mutations in collective cell migration. Sci Rep 11(1):1–12

  90. Lemanski NJ, Cook CN, Smith BH, Pinter-Wollman N (2019) A multiscale review of behavioral variation in collective foraging behavior in honey bees. Insects 10(11):370

    Google Scholar 

  91. Leng B, Wang J, Zhao W, Xiong Z (2014) An extended floor field model based on regular hexagonal cells for pedestrian simulation. Physica A: Stat Mech Appl 402:119–133

    Google Scholar 

  92. Li X, Wang Z, Gao C, Shi L (2017) Reasoning human emotional responses from large-scale social and public media. Appl Math Comput 310:128–193

    MathSciNet  MATH  Google Scholar 

  93. Liang H, Fu Y, Gao J (2021) Bio-inspired self-organized cooperative control consensus for crowded UUV swarm based on adaptive dynamic interaction topology. Appl Intell 51(7):4664–4681

    Google Scholar 

  94. Liao H, Tang M, Luo L, Li C, Chiclana F, Zeng XJ (2018) A bibliometric analysis and visualization of medical big data research. Sustainability 10(1):166

    Google Scholar 

  95. Liebchen B, Löwen H (2018) Synthetic chemotaxis and collective behavior in active matter. Acc Chem Res 51(12):2982–2990

    Google Scholar 

  96. Lin Y, Abaid N (2013) Collective behavior and predation success in a predator-prey model inspired by hunting bats. Phys Rev E 88(6):062724

    Google Scholar 

  97. Liu Y, Gao C, Zhang Z, Wu Y, Liang M, Tao L, Lu Y (2017) A new multi-agent system to simulate the foraging behaviors of Physarum. Nat Comput 16(1):15–29

    MathSciNet  MATH  Google Scholar 

  98. Lu G, Chen L, Luo W (2016) Real-time crowd simulation integrating potential fields and agent method. ACM Trans Model Comput Simul (TOMACS) 26(4):1–16

    MathSciNet  MATH  Google Scholar 

  99. Lv P, Zhang Z, Li C, Guo Y, Zhou B, Xu M (2019) Crowd behavior evolution with emotional contagion in political rallies. IEEE Trans Comput Soc Syst 6(2):377–386

    Google Scholar 

  100. MacGregor HE, Herbert-Read JE, Ioannou CC (2020) Information can explain the dynamics of group order in animal collective behaviour. Nat Commun 11(1):1–8

    Google Scholar 

  101. Maher PJ, MacCarron P, Quayle M (2020) Mapping public health responses with attitude networks: the emergence of opinion-based groups in the UK’s early COVID-19 response phase. Br J Soc Psychol 59(3):641–652

    Google Scholar 

  102. Maniccam S (2003) Traffic jamming on hexagonal lattice. Physica A: Stat Mech Appl 321(3–4):653–664

    MathSciNet  MATH  Google Scholar 

  103. Mavridou DA, Gonzalez D, Kim W, West SA, Foster KR (2018) Bacteria use collective behavior to generate diverse combat strategies. Curr Biol 28(3):345–355

    Google Scholar 

  104. Mayor R, Etienne-Manneville S (2016) The front and rear of collective cell migration nature reviews. Mol Cell Biol 17(2):97–109

    Google Scholar 

  105. Meshulam L, Gauthier JL, Brody CD, Tank DW, Bialek W (2017) Collective behavior of place and non-place neurons in the hippocampal network. Neuron 96(5):1178–1191

    Google Scholar 

  106. Millard AG, Ravikanna R, Groß R, Chesmore D (2019) Towards a swarm robotic system for autonomous cereal harvesting. In: Proceedings of the Annual Conference To-wards Autonomous Robotic Systems. Springer, London, UK, pp 458–461

  107. Minßen T, Gaus C, Urso L, Hanke S, Schattenberg J, Frerichs L (2011) Robots for plant-specific care operations in arable farming-concept and technological requirements for the operation of robot swarms for plant care tasks. EFITA/WCCA 11:1–11

    Google Scholar 

  108. Mısır O, Gökrem L, Can MS (2020) Fuzzy-based self-organizing aggregation method for swarm robots. Biosystems 196:104187

    Google Scholar 

  109. Mogilner A, Edelstein-Keshet L, Bent L, Spiros A (2003) Mutual interactions, potentials, and individual distance in a social aggregation. J Math Biol 47(4):353–389

    MathSciNet  MATH  Google Scholar 

  110. Morin A, Caussin JB, Eloy C, Bartolo D (2015) Collective motion with anticipation: flocking, spinning, and swarming. Phys Rev E 91(1):012134

    MathSciNet  Google Scholar 

  111. Moussaïd M, Nelson JD (2014) Simple heuristics and the modelling of crowd behaviours. In Pedestrian and Evacuation Dynamics 2012. Springer, pp 75–90. https://doi.org/10.1007/978-3-319-02447-9_5

  112. Moussaïd M, Perozo N, Garnier S, Helbing D, Theraulaz G (2010) The walking behaviour of pedestrian social groups and its impact on crowd dynamics. PLoS One 5(4):e10047

    Google Scholar 

  113. Mrkva K, Travers M, Van Boven L (2018) Simulational fluency reduces feelings of psychological distance. J Exp Psychol Gen 147(3):354

    Google Scholar 

  114. Myers DG, Smith SM (2012) Exploring social psychology. McGraw-Hill, New York

    Google Scholar 

  115. Narain R, Golas A, Curtis S, Lin MC (2009) Aggregate dynamics for dense crowd simulation. In ACM SIGGRAPH Asia 2009 papers. Association for Computing Machinery, Yokohama, Japan, pp 1–8

  116. Neville F, Reicher S (2011) The experience of collective participation: shared identity, relatedness and emotionality. Contemp Soc Sci 6(3):377–396

    Google Scholar 

  117. Neville FG, Templeton A, Smith JR, Louis WR (2021) Social norms, social identities and the COVID-19 pandemic: theory and recommendations. Soc Personal Psychol Compass 15(5):e12596

    Google Scholar 

  118. Oğuz O, Akaydın A, Yılmaz T, Güdükbay U (2010) Emergency crowd simulation for outdoor environments. Comput Graph 34(2):136–144

    Google Scholar 

  119. O'Keeffe K, Ceron S, Petersen K (2022) Collective behavior of swarmalators on a ring. Phys Rev E 105(1):014211

    MathSciNet  Google Scholar 

  120. Olfati-Saber R (2006) Flocking for multi-agent dynamic systems: algorithms and theory. IEEE Trans Autom Control 51(3):401–420

    MathSciNet  MATH  Google Scholar 

  121. Patil S, Van Den Berg J, Curtis S, Lin MC, Manocha D (2010) Directing crowd simulations using navigation fields. IEEE Trans Vis Comput Graph 17(2):244–254

    Google Scholar 

  122. Pita D, Moore BA, Tyrrell LP, Fernández-Juricic E (2015) Vision in two cyprinid fish: implications for collective behavior. PeerJ 3:e1113

    Google Scholar 

  123. Popkin G (2016) The Physics Life Nat News 529(7584):16

    Google Scholar 

  124. Prieto Curiel R, González Ramírez H, Quiñones Domínguez M, Orjuela Mendoza JP (2021) A paradox of traffic and extra cars in a city as a collective behaviour. R Soc Open Sci 8(6):201808

    Google Scholar 

  125. Rahman J, Thu M, Arshad N, Van M (2017) Mass gatherings and public health: case studies from the hajj to Mecca. Annals Global Health 83(2):386–393

    Google Scholar 

  126. Rahmani P, Peruani F, Romanczuk P (2020) Flocking in complex environments—attention trade-offs in collective information processing. PLoS Comput Biol 16(4):e1007697

    Google Scholar 

  127. Reicher S (2011) Mass action and mundane reality: an argument for putting crowd analysis at the Centre of the social sciences. ContempSocSci 6:433–449

    Google Scholar 

  128. Rio KW, Dachner GC, Warren WH (2018) Local interactions underlying collective motion in human crowds. Proc R Soc B Biol Sci 285(1878):20180611

    Google Scholar 

  129. Rosenthal SB, Twomey CR, Hartnett AT, Wu HS, Couzin ID (2015) Revealing the hidden networks of interaction in mobile animal groups allows prediction of complex behavioral contagion. Proc Natl Acad Sci 112(15):690–4695

    Google Scholar 

  130. Sabatini M, Palmerini GB (2009) Collective control of spacecraft swarms for space exploration. Celest Mech Dyn Astron 105(1):229–244

    MathSciNet  MATH  Google Scholar 

  131. Sasaki T, Biro D (2017) Cumulative culture can emerge from collective intelligence in animal groups. Nat Commun 8(1):1–6

    Google Scholar 

  132. Seitz M J (2016) Simulating pedestrian dynamics: Towards natural locomotion and psychological decision making. PhD thesis, Technische Universität München, Munich, Germany

  133. Seitz MJ, Bode NW, Köster G (2016a) How cognitive heuristics can explain social interactions in spatial movement. J R Soc Interface 13(121):20160439

    Google Scholar 

  134. Seitz MJ, Dietrich F, Köster G, Bungartz HJ (2016b) The superposition principle: a conceptual perspective on pedestrian stream simulations. Collect Dyn 1:1–19

    Google Scholar 

  135. Seitz MJ, Templeton A, Drury J, Köster G, Philippides A (2017) Parsimony versus reductionism: how can crowd psychology be introduced into computer simulation? Rev Gen Psychol 21(1):95–102

    Google Scholar 

  136. Serena L, Marzolla M, D’Angelo G, Ferretti S (2023) A review of multilevel modeling and simulation for human mobility and behavior. Simul Modell Pract Theory 127:102780

  137. Sewall J, Wilkie D, Lin MC (2011) Interactive hybrid simulation of large-scale traffic. In: Proceedings of the 2011 SIGGRAPH Asia Conference. Association for Computing Machinery, Hong Kong, China, pp 1–12

  138. Siegal G, Siegal N, Bonnie RJ (2009) An account of collective actions in public health American. J Public Health 99(9):1583–1587

    Google Scholar 

  139. Silva ARD, Lages WS, Chaimowicz L (2010) Boids that see: using self-occlusion for simulating large groups on gpus. Comput Entertain 7(4):1–20

    Google Scholar 

  140. Speck T (2016) Collective behavior of active brownian particles: from microscopic clustering to macroscopic phase separation. Eur Phys J Spec Top 225(11–12):2287–2299

    Google Scholar 

  141. Spieser K, Davison DE (2009) Multi-agent stabilisation of the psychological dynamics of one-dimensional crowds. Automatica 45(3):657–664

    MathSciNet  MATH  Google Scholar 

  142. Sporns O (2002) Network analysis, complexity, and brain function. Complexity 8(1):56–60

    MathSciNet  Google Scholar 

  143. Stangl M, Maoz SL, Suthana N (2023) Mobile cognition: imaging the human brain in the ‘real world’. Nat Rev Neurosci 1-16

  144. Stott C, Adang O, Livingstone A, Schreiber M (2008) Tackling football hooliganism: a quantitative study of public order, policing and crowd psychology. Psychol Public Policy Law 14(2):115

    Google Scholar 

  145. Stott C, Hutchison P, Drury J (2001) ‘Hooligans’ abroad? Inter-group dynamics, social identity and participation in collective ‘disorder’ at the 1998 world cup finals. Br J Soc Psychol 40(3):359–384

    Google Scholar 

  146. Stuart DS, Sharifi MS, Christensen KM, Chen A, Kim YS, Chen Y (2019) Crowds involving individuals with disabilities: modeling heterogeneity using fractional order potential fields and the social force model. Physica A: Stat Mech Appl 514:244–258

    Google Scholar 

  147. Templeton A, Drury J, Philippides A (2015) From mindless masses to small groups: conceptualizing collective behavior in crowd modeling. Rev Gen Psychol 19(3):215–229

    Google Scholar 

  148. Templeton A, Drury J, Philippides A (2018) Walking together: behavioural signatures of psychological crowds. R Soc Open Sci 5(7):180172

    Google Scholar 

  149. Théry A, Le Nagard L, Ono-dit-Biot JC, Fradin C, Dalnoki-Veress K, Lauga E (2020) Self-organisation and convection of confined magnetotactic bacteria. Sci Rep 10(1):1–9

    Google Scholar 

  150. Titus M, Hagstrom G, Watson JR (2021) Unsupervised manifold learning of collective behavior. PLoS Comput Biol 17(2):e1007811

    Google Scholar 

  151. Treuille A, Cooper S, Popović Z (2006) Continuum crowds. ACM SIGGRAPH 2006 Papers. Association for Computing Machinery, Boston, Massachusetts, pp 1160–1168

  152. Tsai TY, Wong SK, Chou YH, Lin GW (2018) Directing virtual crowds based on dynamic adjustment of navigation fields. Comput Animat Virtual Worlds 29(1):e1765

    Google Scholar 

  153. Turner JC, Reynolds KJ (2011) Self-categorization theory. Handbook Theor Soc Psych 2(1):399–417

    Google Scholar 

  154. Turner RH, Killian LM (1957) Collective behavior. Prentice-Hall, Englewood Cliffs

    Google Scholar 

  155. Ulieru M, Doursat R (2011) Emergent engineering: a radical paradigm shift. Int J Autonom Adapt Commun Syst 4(1):39–60

    Google Scholar 

  156. van Haeringen ES, Gerritsen C, Hindriks KV (2023) Emotion contagion in agent-based simulations of crowds: a systematic review. Auton Agent Multi-Agent Syst 37(1):6

    Google Scholar 

  157. Varas A, Cornejo MD, Mainemer D, Toledo B, Rogan J, Noz VM, Valdivia JA (2007) Cellular automaton model for evacuation process with obstacles. Physica A: Stat Mech Appl 382(2):631–642

    Google Scholar 

  158. Vassev E, Sterritt R, Rouff C, Hinchey M (2012) Swarm technology at NASA: building resilient systems. IT Prof 14(2):36–42

    Google Scholar 

  159. Vicsek T, Zafeiris A (2012) Collective motion. Phys Rep 517(3–4):71–140

    Google Scholar 

  160. Vicsek T, Czirók A, Ben-Jacob E, Cohen I, Shochet O (1995a) Novel type of phase transition in a system of self-driven particles. Phys Rev Lett 75(6):1226

    MathSciNet  Google Scholar 

  161. Viseras A, Wiedemann T, Manss C, Karolj V, Shutin D, Marchal J (2019) Beehive-inspired information gathering with a swarm of autonomous drones. Sensors 19(19):4349

    Google Scholar 

  162. Volkan VD (2019) Large-group identity, who are we now? Leader–follower relationships and societal–political divisions. Am J Psychoanal 79(2):139–155

    Google Scholar 

  163. Wagoum AUK, Chraibi M, Mehlich J, Seyfried A, Schadschneider A (2012) Efficient and validated simulation of crowds for an evacuation assistant. Comput Animat Virtual Worlds 23(1):3–15

    Google Scholar 

  164. Waldeland JO, Polacheck WJ, Evje S (2020) Collective tumor cell migration in the presence of fibroblasts. J Biomech 100:109568

    Google Scholar 

  165. Walsh JT, Garnier S, Linksvayer TA (2020) Ant collective behavior is heritable and shaped by selection. Am Nat 196(5):541–554

    Google Scholar 

  166. Was J, Lubas R (2014) Towards realistic and effective agent-based models of crowd dynamics. Neurocomputing 146:199–209

    Google Scholar 

  167. Wolfram S (1983) Statistical mechanics of cellular automata. Rev Mod Phys 55(3):601

    MathSciNet  MATH  Google Scholar 

  168. Wolfram S (1984) Cellular automata as models of complexity. Nature 311:419–424

    Google Scholar 

  169. Wood AJ, Ackland GJ (2007) Evolving the selfish herd: emergence of distinct aggregating strategies in an individual-based model. Proc R Soc B Biol Sci 274(1618):1637–1642

    Google Scholar 

  170. Xu M, Li C, Lv P, Chen W, Deng Z, Zhou B (2021) Emotion-based crowd simulation model based on physical strength consumption for emergency scenarios. Inst Electric Electron Eng (IEEE) 2(11):6977–6991

    Google Scholar 

  171. Yalçın ÖN, DiPaola S (2020) Modeling empathy: building a link between affective and cognitive processes. Artif Intell Rev 53:2983–3006

    Google Scholar 

  172. Yang S, Li T, Gong X, Peng B, Hu J (2020) A review on crowd simulation and modeling. Graph Model 111:101081

    Google Scholar 

  173. Yao Y (2022) Human-machine co-intelligence through symbiosis in the SMV space. Appl Intell:1–21

  174. Yu D, Chen CP, Xu H (2021) Fuzzy swarm control based on sliding-mode strategy with self-organized omnidirectional mobile robots system. IEEE Transactions on Systems, Man, and Cybernetics: Systems 52(4):2262–2274

  175. Zhang P, Jian XX, Wong SC, Choi K (2012) Potential field cellular automata model for pedestrian flow. Phys Rev E 85(2):021119

Download references

Acknowledgements

This work is supported by National Natural Science Foundation of China (Grant Nos. 71571091 and 71771112).

Author information

Authors and Affiliations

Authors

Contributions

Conceptualization: Xue-Bo Chen, Junqiao Zhang; Methodology: Junqiao Zhang, Qiang Qu; Formal analysis and investigation: Junqiao Zhang, Xue-Bo Chen, Qiang Qu; Writing - original draft preparation: Junqiao Zhang; Writing- review and editing: Xue-Bo Chen, Qiang Qu; Resources: Xue-Bo Chen. All authors have read and agreed to the final version of the manuscript.

Corresponding author

Correspondence to Xue-Bo Chen.

Ethics declarations

Competing interests

The authors declare that they have no conflict of interest.

Ethical and informed consent

Since the data used for this research does not involve human or animal participants, this section is not applicable.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, J., Qu, Q. & Chen, XB. A review on collective behavior modeling and simulation: building a link between cognitive psychology and physical action. Appl Intell 53, 25954–25983 (2023). https://doi.org/10.1007/s10489-023-04924-7

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10489-023-04924-7

Keywords

Navigation