Skip to main content
Log in

Theories, algorithms and applications in tensor learning

  • Published:
Applied Intelligence Aims and scope Submit manuscript

Abstract

Due to the accelerated development and popularization of Internet, mobile Internet, and Internet of Things and the breakthrough of storage and communication technologies, the amount of data obtained in the fields of health care, social media, and climate science is increasing, showing complex high-dimensional, multimodal, and heterogeneous characteristics. As the expansion of a vector and matrix, a tensor is the natural and essential mode of representation for this kind of data. The theory of tensor algebra provides a powerful mathematical tool and an extensible framework for learning algorithms for processing data with high-dimensional heterogeneity and complex dependence. In recent years, tensor theory and its applications have become a research hotspot, from new tensor models and scalable algorithms in academia to industry solutions. The article shows its advances in tensor theories, algorithms, and applications. Firstly, tensor operation, classical tensor decomposition theory, and t-product tensor theory are introduced. Secondly, tensor supervised learning, tensor unsupervised learning, and tensor deep learning are discussed from the perspective of tensor decomposition and t-product, and then their application research is summarized. Finally, the opportunities and challenges of tensor learning are briefly discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Algorithm 1
Algorithm 2
Algorithm 3
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Tao D, Li X, Hu W, Maybank S, Wu X (2005) Supervised tensor learning. In: Fifth IEEE international conference on data mining (ICDM’05), IEEE, p 8

  2. Ben X, Zhang P, Lai Z, Yan R, Zhai X, Meng W (2019) A general tensor representation framework for cross-view gait recognition. Pattern Recogn 90:87–98

    Google Scholar 

  3. Kolda TG, Bader BW (2009) Tensor decompositions and applications. SIAM Rev 51 (3):455–500

    MathSciNet  MATH  Google Scholar 

  4. Comon P (2014) Tensors: a brief introduction. IEEE Signal Proc Mag 31(3):44–53

    Google Scholar 

  5. Papalexakis EE, Faloutsos C, Sidiropoulos ND (2016) Tensors for data mining and data fusion: models, applications, and scalable algorithms. ACM Trans Intell Syst Technol (TIST) 8(2):1–44

    Google Scholar 

  6. Bro R (1997) Parafac. tutorial and applications. Chemometr Intell Lab Syst 38(2):149–171

    Google Scholar 

  7. Cichocki A, Mandic D, De Lathauwer L, Zhou G, Zhao Q, Caiafa C, Phan HA (2015) Tensor decompositions for signal processing applications: from two-way to multiway component analysis. IEEE Signal Process Mag 32(2):145–163

    Google Scholar 

  8. Sidiropoulos ND, De Lathauwer L, Fu X, Huang K, Papalexakis EE, Faloutsos C (2017) Tensor decomposition for signal processing and machine learning. IEEE Trans Signal Process 65(13):3551–3582

    MathSciNet  MATH  Google Scholar 

  9. De Silva V, Lim L-H (2008) Tensor rank and the ill-posedness of the best low-rank approximation problem. SIAM J Matrix Anal Appl 30(3):1084–1127

    MathSciNet  MATH  Google Scholar 

  10. Oseledets IV (2011) Tensor-train decomposition. SIAM J Sci Comput 33(5):2295–2317

    MathSciNet  MATH  Google Scholar 

  11. Hitchcock FL (1927) The expression of a tensor or a polyadic as a sum of products. J Math Phys 6(1-4):164–189

    MATH  Google Scholar 

  12. Hitchcock FL (1928) Multiple invariants and generalized rank of a p-way matrix or tensor. J Math Phys 7(1-4):39–79

    MATH  Google Scholar 

  13. Cichocki A, Lee N, Oseledets I, Phan A-H, Zhao Q, Mandic DP et al (2016) Tensor networks for dimensionality reduction and large-scale optimization: part 1 low-rank tensor decompositions. Found Trends Mach Learn 9(4-5):249–429

    MATH  Google Scholar 

  14. Zhao Q, Zhou G, Xie S, Zhang L, Cichocki A (2016) Tensor ring decomposition. arXiv:1606.05535

  15. Kilmer ME, Martin CD (2011) Factorization strategies for third-order tensors. Linear Algebra Appl 435(3):641–658

    MathSciNet  MATH  Google Scholar 

  16. Kilmer ME, Braman K, Hao N, Hoover RC (2013) Third-order tensors as operators on matrices: a theoretical and computational framework with applications in imaging. SIAM J Matrix Anal Appl 34 (1):148–172

    MathSciNet  MATH  Google Scholar 

  17. Zhou H, Li L, Zhu H (2013) Tensor regression with applications in neuroimaging data analysis. J Am Stat Assoc 108(502):540–552

    MathSciNet  MATH  Google Scholar 

  18. Hoff PD (2015) Multilinear tensor regression for longitudinal relational data. Ann Appl Stat 9 (3):1169

    MathSciNet  MATH  Google Scholar 

  19. Yu R, Liu Y (2016) Learning from multiway data: simple and efficient tensor regression. In: International conference on machine learning, PMLR, pp 373–381

  20. Rabusseau G, Kadri H (2016) Low-rank regression with tensor responses. Adv Neural Inf Process Syst 29

  21. Sun WW, Li L (2017) Store: sparse tensor response regression and neuroimaging analysis. J Mach Learn Res 18(1):4908–4944

    MathSciNet  MATH  Google Scholar 

  22. Liu J, Zhu C, Long Z, Huang H, Liu Y (2021) Low-rank tensor ring learning for multi-linear regression. Pattern Recogn 113:107753

    Google Scholar 

  23. Wang D, Zheng Y, Lian H, Li G (2022) High-dimensional vector autoregressive time series modeling via tensor decomposition. J Am Stat Assoc 117(539):1338–1356

    MathSciNet  MATH  Google Scholar 

  24. Li C, Zhang H (2021) Tensor quantile regression with application to association between neuroimages and human intelligence. Ann Appl Stat 15(3):1455–1477

    MathSciNet  MATH  Google Scholar 

  25. Zhao Q, Zhou G, Adali T, Zhang L, Cichocki A (2013) Kernelization of tensor-based models for multiway data analysis: processing of multidimensional structured data. IEEE Signal Proc Mag 30 (4):137–148

    Google Scholar 

  26. Hao B, Wang B, Wang P, Zhang J, Yang J, Sun WW (2021) Sparse tensor additive regression. J Mach Learn Res 22

  27. Huang J, Horowitz JL, Wei F (2010) Variable selection in nonparametric additive models. Ann Stat 38(4):2282–2313

    MathSciNet  MATH  Google Scholar 

  28. Fan J, Feng Y, Song R (2011) Nonparametric independence screening in sparse ultra-high-dimensional additive models. J Am Stat Assoc 106(494):544–557

    MathSciNet  MATH  Google Scholar 

  29. Luo L, Xie Y, Zhang Z, Li W-J (2015) Support matrix machines. In: International conference on machine learning, PMLR, pp 938–947

  30. Luo L, Xie Y, Zhang Z, Li W-J (2015) Support matrix machines. In: International conference on machine learning, PMLR, pp 938–947

  31. Cai D, He X, Han J (2006) Learning with tensor representation. Technical Report

  32. Tao D, Li X, Hu W, Maybank S, Wu X (2005) Supervised tensor learning. In: Fifth IEEE international conference on data mining (ICDM’05), IEEE, p 8

  33. Kotsia I, Patras I (2011) Support tucker machines. In: CVPR 2011, IEEE, pp 633–640

  34. Kotsia I, Guo W, Patras I (2012) Higher rank support tensor machines for visual recognition. Pattern Recogn 45(12):4192–4203

    MATH  Google Scholar 

  35. Hao Z, He L, Chen B, Yang X (2013) A linear support higher-order tensor machine for classification. IEEE Trans Image Process 22(7):2911–2920

    Google Scholar 

  36. Chen C, Batselier K, Ko C-Y, Wong N (2019) A support tensor train machine. In: 2019 International joint conference on neural networks (IJCNN), IEEE, pp 1–8

  37. Signoretto M, Olivetti E, De Lathauwer L, Suykens JA (2012) Classification of multichannel signals with cumulant-based kernels. IEEE Trans Signal Process 60(5):2304–2314

    MathSciNet  MATH  Google Scholar 

  38. Zhao Q, Zhou G, Adalı T, Zhang L, Cichocki A (2013) Kernel-based tensor partial least squares for reconstruction of limb movements. In: 2013 IEEE International conference on acoustics, speech and signal processing, IEEE, pp 3577–3581

  39. He L, Kong X, Yu PS, Yang X, Ragin AB, Hao Z (2014) Dusk: a dual structure-preserving kernel for supervised tensor learning with applications to neuroimages. In: Proceedings of the 2014 SIAM international conference on data mining, SIAM, pp 127–135

  40. He L, Lu C-T, Ding H, Wang S, Shen L, Yu PS, Ragin AB (2017) Multi-way multi-level kernel modeling for neuroimaging classification. In: Proceedings of the IEEE conference on computer vision and pattern recognition, pp 356–364

  41. Chen C, Batselier K, Yu W, Wong N (2022) Kernelized support tensor train machines. Pattern Recogn 122:108337

    Google Scholar 

  42. Friedland S, Li Q, Schonfeld D (2014) Compressive sensing of sparse tensors. IEEE Trans Image Process 23(10):4438–4447

    MathSciNet  MATH  Google Scholar 

  43. Boche H, Calderbank R, Kutyniok G, Vybiral J et al (2015) Compressed sensing and its applications. In: Boche H, Caire G, Calderbank R, Marz M, Kutynick G, Mathar R (eds) Compressed sensing and its applications, Springer, 2017, pp 1–54

  44. Bernal EA, Li Q (2015) Hybrid vectorial and tensorial compressive sensing for hyperspectral imaging. In: 2015 IEEE international conference on acoustics, speech and signal processing (ICASSP), IEEE, pp 2454–2458

  45. Li Q, Bernal EA (2016) Hybrid tenso-vectorial compressive sensing for hyperspectral imaging. J Electr Imag 25(3):033001

    Google Scholar 

  46. Sun WW, Li L (2019) Dynamic tensor clustering. J Am Stat Assoc 114(528):1894–1907

    MathSciNet  MATH  Google Scholar 

  47. Wu J, Lin Z, Zha H (2019) Essential tensor learning for multi-view spectral clustering. IEEE Trans Image Process 28(12):5910–5922

    MathSciNet  MATH  Google Scholar 

  48. Yin M, Gao J, Xie S, Guo Y (2018) Multiview subspace clustering via tensorial t-product representation. IEEE Trans Neural Netw Learn Syst 30(3):851–864

    MathSciNet  Google Scholar 

  49. Sun W, Wang Z, Liu H, Cheng G (2015) Non-convex statistical optimization for sparse tensor graphical model. Adv Neural Inf Process Syst 28

  50. Lyu X, Sun WW, Wang Z, Liu H, Yang J, Cheng G (2019) Tensor graphical model: non-convex optimization and statistical inference. IEEE Trans Pattern Anal Mach Intell 42(8):2024–2037

    Google Scholar 

  51. He S, Yin J, Li H, Wang X (2014) Graphical model selection and estimation for high dimensional tensor data. J Multivar Anal 128:165–185

    MathSciNet  MATH  Google Scholar 

  52. Shahid N, Grassi F, Vandergheynst P (2016) Multilinear low-rank tensors on graphs & applications. arXiv:1611.04835

  53. Xu P, Zhang T, Gu Q (2017) Efficient algorithm for sparse tensor-variate gaussian graphical models via gradient descent. In: Artificial intelligence and statistics, PMLR, pp 923–932

  54. Li Y, Fujita H, Li J, Liu C, Zhang Z (2022) Tensor approximate entropy: an entropy measure for sleep scoring. Knowl-Based Syst 245:108503

    Google Scholar 

  55. Du S, Shi Y, Shan G, Wang W, Ma Y (2021) Tensor low-rank sparse representation for tensor subspace learning. Neurocomputing 440:351–364

    Google Scholar 

  56. Du S, Liu B, Shan G, Shi Y, Wang W (2022) Enhanced tensor low-rank representation for clustering and denoising. Knowl-Based Syst 243:108468

    Google Scholar 

  57. Denton EL, Zaremba W, Bruna J, LeCun Y, Fergus R (2014) Exploiting linear structure within convolutional networks for efficient evaluation. Adv Neural Inf Process Syst 27

  58. Lebedev V, Ganin Y, Rakhuba M, Oseledets I, Lempitsky V (2014) Speeding-up convolutional neural networks using fine-tuned cp-decomposition. arXiv:1412.6553

  59. Tai C, Xiao T, Zhang Y, Wang X et al (2015) Convolutional neural networks with low-rank regularization. arXiv:1511.06067

  60. Kim Y-D, Park E, Yoo S, Choi T, Yang L, Shin D (2015) Compression of deep convolutional neural networks for fast and low power mobile applications. arXiv:1511.06530

  61. Kossaifi J, Toisoul A, Bulat A, Panagakis Y, Hospedales TM, Pantic M (2020) Factorized higher-order cnns with an application to spatio-temporal emotion estimation. In: Proceedings of the IEEE/CVF conference on computer vision and pattern recognition, pp 6060–6069

  62. Simonyan K, Zisserman A (2014) Very deep convolutional networks for large-scale image recognition. arXiv:1409.1556

  63. Novikov A, Podoprikhin D, Osokin A, Vetrov DP (2015) Tensorizing neural networks. Adv Neural Inf Process Syst 28

  64. Ye J, Li G, Chen D, Yang H, Zhe S, Xu Z (2020) Block-term tensor neural networks. Neural Netw 130:11–21

    Google Scholar 

  65. Kossaifi J, Lipton ZC, Kolbeinsson A, Khanna A, Furlanello T, Anandkumar A (2020) Tensor regression networks. J Mach Learn Res 21(1):4862–4882

    MathSciNet  MATH  Google Scholar 

  66. Kasiviswanathan SP, Narodytska N, Jin H (2018) Network approximation using tensor sketching. In: IJCAI, pp 2319–2325

  67. Kossaifi J, Bulat A, Tzimiropoulos G, Pantic M (2019) T-net: parametrizing fully convolutional nets with a single high-order tensor. In: Proceedings of the IEEE/CVF conference on computer vision and pattern recognition, pp 7822–7831

  68. Yang Y, Krompass D, Tresp V (2017) Tensor-train recurrent neural networks for video classification. In: International conference on machine learning, PMLR, pp 3891–3900

  69. Giampouras PV, Rontogiannis AA, Kofidis E (2022) Block-term tensor decomposition model selection and computation: The bayesian way. IEEE Trans Signal Process 70:1704–1717

    MathSciNet  Google Scholar 

  70. Ye J, Wang L, Li G, Chen D, Zhe S, Chu X, Xu Z (2018) Learning compact recurrent neural networks with block-term tensor decomposition. In: Proceedings of the IEEE Conference on computer vision and pattern recognition, pp 9378–9387

  71. Khrulkov V, Hrinchuk O, Oseledets I (2019) Generalized tensor models for recurrent neural networks. arXiv:1901.10801

  72. Cohen N, Sharir O, Shashua A (2016) On the expressive power of deep learning: a tensor analysis. In: Conference on learning theory, PMLR, pp 698–728

  73. Sharir O, Shashua A (2017) On the expressive power of overlapping architectures of deep learning. arXiv:1703.02065

  74. Khrulkov V, Novikov A, Oseledets I (2017) Expressive power of recurrent neural networks. arXiv:1711.00811

  75. Li J, Sun Y, Su J, Suzuki T, Huang F (2020) Understanding generalization in deep learning via tensor methods. In: International conference on artificial intelligence and statistics, PMLR, pp 504–515

  76. Janzamin M, Sedghi H, Anandkumar A (2015) Beating the perils of non-convexity: Guaranteed training of neural networks using tensor methods. arXiv:1506.08473

  77. Ge R, Lee JD, Ma T (2017) Learning one-hidden-layer neural networks with landscape design. arXiv:1711.00501

  78. Mondelli M, Montanari A (2019) On the connection between learning two-layer neural networks and tensor decomposition. In: The 22nd International conference on artificial intelligence and statistics, PMLR, pp 1051–1060

  79. Newman E, Horesh L, Avron H, Kilmer M (2018) Stable tensor neural networks for rapid deep learning. arXiv:1811.06569

  80. Yin M, Gao J, Xie S, Guo Y (2018) Multiview subspace clustering via tensorial t-product representation. IEEE Trans Neural Netw Learn Syst 30(3):851–864

    MathSciNet  Google Scholar 

  81. Bibi A, Ghanem B (2017) High order tensor formulation for convolutional sparse coding. In: Proceedings of the IEEE international conference on computer vision, pp 1772–1780

  82. Lu C, Feng J, Chen Y, Liu W, Lin Z, Yan S (2019) Tensor robust principal component analysis with a new tensor nuclear norm. IEEE Trans Pattern Anal Mach Intell 42(4):925–938

    Google Scholar 

  83. Wang X, Che M, Wei Y (2020) Tensor neural network models for tensor singular value decompositions. Comput Optim Appl 75(3):753–777

    MathSciNet  MATH  Google Scholar 

  84. Zhou Y, Cheung Y-M (2019) Bayesian low-tubal-rank robust tensor factorization with multi-rank determination. IEEE Trans Pattern Anal Mach Intell 43(1):62–76

    Google Scholar 

  85. He H, Ling C, Xie W (2022) Tensor completion via a generalized transformed tensor t-product decomposition without t-svd. J Sci Comput 93(2):1–35

    MathSciNet  MATH  Google Scholar 

  86. Cortes C, Vapnik V (1995) Support-vector networks. Mach Learn 20(3):273–297

    MATH  Google Scholar 

  87. Biswas SK, Milanfar P (2017) Linear support tensor machine with lsk channels: pedestrian detection in thermal infrared images. IEEE Trans Image Process 26(9):4229–4242

    MathSciNet  MATH  Google Scholar 

  88. Chen Z, Batselier K, Suykens JA, Wong N (2017) Parallelized tensor train learning of polynomial classifiers. IEEE Trans Neural Netw Learn Syst 29(10):4621–4632

    MathSciNet  Google Scholar 

  89. Afshar A, Yin K, Yan S, Qian C, Ho J, Park H, Sun J (2021) Swift: scalable wasserstein factorization for sparse nonnegative tensors. In: Proceedings of the AAAI conference on artificial intelligence, vol 35, pp 6548–6556

  90. Ho JC, Ghosh J, Sun J (2014) Marble: high-throughput phenotyping from electronic health records via sparse nonnegative tensor factorization. In: Proceedings of the 20th ACM SIGKDD international conference on knowledge discovery and data mining, pp 115–124

  91. Ho JC, Ghosh J, Steinhubl SR, Stewart WF, Denny JC, Malin BA, Sun J (2014) Limestone: High-throughput candidate phenotype generation via tensor factorization. J Biomed Inform 52:199–211

    Google Scholar 

  92. Li Y, Ngom A (2010) Non-negative matrix and tensor factorization based classification of clinical microarray gene expression data. In: 2010 IEEE International conference on bioinformatics and biomedicine (BIBM), IEEE, pp 438–443

  93. Fanaee-T H, Gama J (2014) An eigenvector-based hotspot detection. arXiv:1406.3191

  94. Wang Y, Chen R, Ghosh J, Denny JC, Kho A, Chen Y, Malin BA, Sun J (2015) Rubik: Knowledge guided tensor factorization and completion for health data analytics. In: Proceedings of the 21th ACM SIGKDD international conference on knowledge discovery and data mining, pp 1265–1274

  95. Mu Y, Ding W, Morabito M, Tao D (2011) Empirical discriminative tensor analysis for crime forecasting. In: International conference on knowledge science, engineering and management, Springer, pp 293–304

  96. Wang Y, Zheng Y, Xue Y (2014) Travel time estimation of a path using sparse trajectories. In: Proceedings of the 20th ACM SIGKDD international conference on knowledge discovery and data mining, pp 25–34

  97. Zheng Y, Liu T, Wang Y, Zhu Y, Liu Y, Chang E (2014) Diagnosing new york city’s noises with ubiquitous data. In: Proceedings of the 2014 ACM international joint conference on pervasive and ubiquitous computing, pp 715–725

  98. Kuang L, Yang LT, Qiu K (2016) Tensor-based software-defined internet of things. IEEE Wirel Commun 23(5):84–89

    Google Scholar 

  99. Gao Y, Zhang G, Zhang C, Wang J, Yang LT, Zhao Y (2021) Federated tensor decomposition-based feature extraction approach for industrial iot. IEEE Trans Ind Inf 17(12):8541–8549

    Google Scholar 

  100. Singh A, Aujla GS, Garg S, Kaddoum G, Singh G (2019) Deep-learning-based sdn model for internet of things: an incremental tensor train approach. IEEE Internet Things J 7(7):6302–6311

    Google Scholar 

  101. Liu H, Yang LT, Lin M, Yin D, Guo Y (2018) A tensor-based holistic edge computing optimization framework for internet of things. IEEE Netw 32(1):88–95

    Google Scholar 

  102. Liu H, Yang LT, Ding J, Guo Y, Xie X, Wang Z-J (2020) Scalable tensor-train-based tensor computations for cyber–physical–social big data. IEEE Trans Comput Soc Syst 7(4):873–885

    Google Scholar 

  103. Wang W, Zhang M (2018) Tensor deep learning model for heterogeneous data fusion in internet of things. IEEE Trans Emerg Top Comput Intell 4(1):32–41

    MathSciNet  Google Scholar 

  104. Li P, Chen Z, Yang LT, Zhang Q, Deen MJ (2017) Deep convolutional computation model for feature learning on big data in internet of things. IEEE Trans Ind Inf 14(2):790–798

    Google Scholar 

  105. Deng X, Jiang P, Peng X, Mi C (2018) An intelligent outlier detection method with one class support tucker machine and genetic algorithm toward big sensor data in internet of things. IEEE Trans Ind Electron 66(6):4672–4683

    Google Scholar 

  106. Cheng Y, Li G, Wong N, Chen H-B, Yu H (2020) Deepeye: a deeply tensor-compressed neural network for video comprehension on terminal devices. ACM Trans Embed Comput Syst (TECS) 19 (3):1–25

    Google Scholar 

  107. Liang J, Yu G, Chen B, Zhao M (2015) Decentralized dimensionality reduction for distributed tensor data across sensor networks. IEEE Trans Neural Netw Learn Syst 27(11):2174–2186

    MathSciNet  Google Scholar 

  108. He J, Zhou Y, Sun G, Geng T (2019) Multi-attribute data recovery in wireless sensor networks with joint sparsity and low-rank constraints based on tensor completion. IEEE Access 7:135220–135230

    Google Scholar 

  109. Renard N, Bourennane S (2008) Improvement of target detection methods by multiway filtering. IEEE Trans Geosci Remote Sens 46(8):2407–2417

    Google Scholar 

  110. Makantasis K, Doulamis A, Doulamis N, Nikitakis A (2017) Tensor-based classifiers for hyperspectral data analysis. arXiv:1709.08164

  111. Renard N, Bourennane S (2009) Dimensionality reduction based on tensor modeling for classification methods. IEEE Trans Geosci Remote Sens 47(4):1123–1131

    Google Scholar 

  112. Zhang Q, Wang H, Plemmons RJ, Pauca VP (2008) Tensor methods for hyperspectral data analysis: a space object material identification study. JOSA A 25(12):3001–3012

    Google Scholar 

  113. Zhang L, Zhang L, Tao D, Huang X (2010) A multifeature tensor for remote-sensing target recognition. IEEE Geosci Remote Sens Lett 8(2):374–378

    Google Scholar 

  114. Guo X, Huang X, Zhang L, Zhang L, Plaza A, Benediktsson JA (2016) Support tensor machines for classification of hyperspectral remote sensing imagery. IEEE Trans Geosci Remote Sens 54(6):3248–3264

    Google Scholar 

  115. Lu H, Plataniotis KN, Venetsanopoulos AN (2008) Mpca: multilinear principal component analysis of tensor objects. IEEE Trans Neural Netw 19(1):18–39

    Google Scholar 

  116. Xiong L, Chen X, Huang T-K, Schneider J, Carbonell JG (2010) Temporal collaborative filtering with bayesian probabilistic tensor factorization. In: Proceedings of the 2010 SIAM international conference on data mining, SIAM, pp 211–222

  117. Salakhutdinov R, Mnih A (2008) Bayesian probabilistic matrix factorization using markov chain monte carlo. In: Proceedings of the 25th international conference on machine learning, pp 880–887

  118. Karatzoglou A, Amatriain X, Baltrunas L, Oliver N (2010) Multiverse recommendation: n-dimensional tensor factorization for context-aware collaborative filtering. In: Proceedings of the Fourth ACM conference on recommender systems, pp 79– 86

  119. Rendle S (2010) Factorization machines. In: 2010 IEEE international conference on data mining, IEEE, pp 995–1000

  120. Zhu Z, Hu X, Caverlee J (2018) Fairness-aware tensor-based recommendation. In: Proceedings of the 27th ACM international conference on information and knowledge management, pp 1153–1162

  121. Shan Y, Hoens TR, Jiao J, Wang H, Yu D, Mao J (2016) Deep crossing: Web-scale modeling without manually crafted combinatorial features. In: Proceedings of the 22nd ACM SIGKDD international conference on knowledge discovery and data mining, pp 255–262

  122. Cohn D, Hofmann T (2000) The missing link-a probabilistic model of document content and hypertext connectivity. Adv Neural Inf Process Syst 13

  123. Symeonidis P, Nanopoulos A, Manolopoulos Y (2008) Tag recommendations based on tensor dimensionality reduction. In: Proceedings of the 2008 ACM conference on recommender systems, pp 43–50

  124. Rendle S, Schmidt-Thieme L (2010) Pairwise interaction tensor factorization for personalized tag recommendation. In: Proceedings of the Third ACM international conference on web search and data mining, pp 81–90

  125. Ran B, Tan H, Wu Y, Jin PJ (2016) Tensor based missing traffic data completion with spatial–temporal correlation. Physica A Stat Mech Appl 446:54–63

    Google Scholar 

  126. Zhang H, Chen P, Zheng J, Zhu J, Yu G, Wang Y, Liu HX (2019) Missing data detection and imputation for urban anpr system using an iterative tensor decomposition approach. Trans Res Part C Emerg Technol 107:337–355

    Google Scholar 

  127. Tan H, Wu Y, Shen B, Jin PJ, Ran B (2016) Short-term traffic prediction based on dynamic tensor completion. IEEE Trans Intell Transp Syst 17(8):2123–2133

    Google Scholar 

  128. Tan H, Wu Y, Shen B, Jin PJ, Ran B (2016) Short-term traffic prediction based on dynamic tensor completion. IEEE Trans Intell Transp Syst 17(8):2123–2133

    Google Scholar 

  129. Chen X, Chen Y, Saunier N, Sun L (2021) Scalable low-rank tensor learning for spatiotemporal traffic data imputation. Transp Res Part C Emerg Technol 129:103226

    Google Scholar 

  130. Wang J, Gao F, Cui P, Li C, Xiong Z (2014) Discovering urban spatio-temporal structure from time-evolving traffic networks. In: Asia-pacific web conference, Springer, pp 93–104

  131. Fanaee-T H, Gama J (2016) Event detection from traffic tensors: a hybrid model. Neurocomputing 203:22–33

    Google Scholar 

  132. Tan H, Feng J, Feng G, Wang W, Zhang Y-J (2013) Traffic volume data outlier recovery via tensor model. Math Probl Eng 2013

  133. Tan H, Feng G, Feng J, Wang W, Zhang Y-J, Li F (2013) A tensor-based method for missing traffic data completion. Trans Res Part C Emerg Technol 28:15–27

    Google Scholar 

  134. Acar E, Aykut-Bingol C, Bingol H, Bro R, Yener B (2007) Multiway analysis of epilepsy tensors. Bioinformatics 23(13):10–18

    Google Scholar 

  135. Papalexakis EE, Faloutsos C, Mitchell TM, Talukdar PP, Sidiropoulos ND, Murphy B (2014) Turbo-smt: accelerating coupled sparse matrix-tensor factorizations by 200x. In: Proceedings of the 2014 SIAM international conference on data mining, SIAM, pp 118–126

  136. Chen D, Li X, Wang L, Khan SU, Wang J, Zeng K, Cai C (2014) Fast and scalable multi-way analysis of massive neural data. IEEE Trans Comput 64(3):707–719

    MathSciNet  MATH  Google Scholar 

  137. Dao NTA, Dung NV, Trung NL, Abed-Meraim K et al (2020) Multi-channel eeg epileptic spike detection by a new method of tensor decomposition. J Neural Eng 17(1):016023

    Google Scholar 

  138. Duan F, Jia H, Zhang Z, Feng F, Tan Y, Dai Y, Cichocki A, Yang Z, Caiafa CF, Sun Z et al (2021) On the robustness of eeg tensor completion methods. Sci China Technol Sci 64 (9):1828–1842

    Google Scholar 

  139. Nion D, Sidiropoulos ND (2010) Tensor algebra and multidimensional harmonic retrieval in signal processing for mimo radar. IEEE Trans Signal Process 58(11):5693–5705

    MathSciNet  MATH  Google Scholar 

  140. Muti D, Bourennane S (2005) Multidimensional filtering based on a tensor approach. Signal Process 85(12):2338–2353

    MATH  Google Scholar 

  141. Stanley JS, Chi EC, Mishne G (2020) Multiway graph signal processing on tensors: Integrative analysis of irregular geometries. IEEE Signal Proc Mag 37(6):160–173

    Google Scholar 

  142. Han K, Nehorai A (2014) Nested vector-sensor array processing via tensor modeling. IEEE Trans Signal Process 62(10):2542–2553

    MathSciNet  MATH  Google Scholar 

  143. De Lathauwer L, Castaing J (2007) Tensor-based techniques for the blind separation of ds–cdma signals. Signal Process 87(2):322–336

    MATH  Google Scholar 

  144. De Lathauwer L (1997) Signal processing based on multilinear algebra katholieke universiteit leuven leuven

  145. Wang X, Wang W, Yang LT, Liao S, Yin D, Deen MJ (2018) A distributed hosvd method with its incremental computation for big data in cyber-physical-social systems. IEEE Trans Comput Soc Syst 5(2):481–492

    Google Scholar 

  146. Wang X, Yang LT, Chen X, Wang L, Ranjan R, Chen X, Deen MJ (2018) A multi-order distributed hosvd with its incremental computing for big services in cyber-physical-social systems. IEEE Trans Big Data 6(4):666–678

    Google Scholar 

  147. Bu F (2017) A high-order clustering algorithm based on dropout deep learning for heterogeneous data in cyber-physical-social systems. IEEE Access 6:11687–11693

    Google Scholar 

  148. Zhang S, Yang LT, Feng J, Wei W, Cui Z, Xie X, Yan P (2021) A tensor-network-based big data fusion framework for cyber–physical–social systems (cpss). Inf Fusion 76:337–354

    Google Scholar 

  149. Wang P, Yang LT, Peng Y, Li J, Xie X (2019) m2t2: the multivariate multistep transition tensor for user mobility pattern prediction. IEEE Trans Netw Sci Eng 7(2):907–917

    Google Scholar 

  150. Kolda TG, Bader BW, Kenny JP (2005) Higher-order web link analysis using multilinear algebra. In: Fifth IEEE international conference on data mining (ICDM’05), IEEE, p 8

  151. Sun J-T, Zeng H-J, Liu H, Lu Y, Chen Z (2005) Cubesvd: a novel approach to personalized web search. In: Proceedings of the 14th international conference on world wide web, pp 382–390

  152. Agrawal R, Golshan B, Papalexakis E (2015) A study of distinctiveness in web results of two search engines. In: Proceedings of the 24th international conference on world wide web, pp 267–273

  153. Liu J, Musialski P, Wonka P, Ye J (2012) Tensor completion for estimating missing values in visual data. IEEE Trans Pattern Anal Mach Intell 35(1):208–220

    Google Scholar 

  154. Vasilescu MAO, Terzopoulos D (2002) Multilinear analysis of image ensembles: tensorfaces. In: European conference on computer vision, Springer, pp 447–460

  155. Tao D, Song M, Li X, Shen J, Sun J, Wu X, Faloutsos C, Maybank SJ (2008) Bayesian tensor approach for 3-d face modeling. IEEE Trans Circ Syst Video Technol 18(10):1397–1410

    Google Scholar 

  156. Wu P-L, Zhao X-L, Ding M, Zheng Y-B, Cui L-B, Huang T-Z (2023) Tensor ring decomposition-based model with interpretable gradient factors regularization for tensor completion. Knowl-Based Syst 259:110094

    Google Scholar 

  157. Du S, Xiao Q, Shi Y, Cucchiara R, Ma Y (2021) Unifying tensor factorization and tensor nuclear norm approaches for low-rank tensor completion. Neurocomputing 458:204–218

    Google Scholar 

  158. Bai Y, Tezcan J, Cheng Q, Cheng J (2013) A multiway model for predicting earthquake ground motion. In: 2013 14th ACIS international conference on software engineering, artificial intelligence, networking and parallel/distributed computing, IEEE, pp 219–224

Download references

Acknowledgements

We acknowledge the financial support by the National Natural Science Foundation of China (62172182), the Hunan Provincial Natural Science Foundation of China (2020JJ4489 and 2020JJ4490), A Project Supported by Scientific Research Fund of Hunan Provincial Education Department (19A394), and Huaihua University Double First-Class initiative Applied Characteristic Discipline of Control Science and Engineering.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiaowu Deng.

Ethics declarations

Conflict of Interests

There are no conflicts of interest to declare.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Deng, X., Shi, Y. & Yao, D. Theories, algorithms and applications in tensor learning. Appl Intell 53, 20514–20534 (2023). https://doi.org/10.1007/s10489-023-04538-z

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10489-023-04538-z

Keywords

Navigation