Skip to main content
Log in

Evolutionary many-objective algorithm with improved growing neural gas and angle-penalized distance for irregular problems

  • Published:
Applied Intelligence Aims and scope Submit manuscript

Abstract

For solving complex many-objective optimization problems, the many-objective evolutionary algorithms may require new distance measures and more enormous selection pressures to guide solutions to the Pareto front. In this case, solving irregular Pareto front problems with growing neural gas networks as reference vectors is a great challenge. This paper proposes an algorithm with improved growing neural gas and angle-penalized distance to overcome the difficulty: First, a new parameter, the proportion of the solutions relatively close to the input data, is introduced to the angle-penalty distance, boosting the influence on the entire environment selection and enhancing the effect for Pareto front learning. Second, the edge-acceleration strategy enhances the ability of growing neural gas to match Pareto fronts and adapt to rapidly changing input. Finally, by adjusting the nodes deletion strategy in the search procedure, more promising solutions may be maintained to optimize the solutions’ distribution. In experiments tackling problems with irregular Pareto fronts, the proposed algorithm performs competitively in contrast to the other six excellent algorithms.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Algorithm 1
Algorithm 2
Fig. 4
Fig. 5
Algorithm 4
Algorithm 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  1. Fathollahi-Fard AM, Woodward L, Akhrif O (2021) Sustainable distributed permutation flow-shop scheduling model based on a triple bottom line concept. J Ind Infor Integr 24:100233

    Google Scholar 

  2. Yuan G, Yang Y, Tian G, Fathollahi-Fard AM (2022) Capacitated multi-objective disassembly scheduling with fuzzy processing time via a fruit fly optimization algorithm. Environ Sci Pollut Res: 1–18. https://doi.org/10.1007/s11356-022-18883-y

  3. Tian G, Fathollahi-Fard AM, Ren Y, Li Z, Jiang X (2022) Multi-objective scheduling of priority-based rescue vehicles to extinguish forest fires using a multi-objective discrete gravitational search algorithm. Inf Sci 608:578–596

    Article  Google Scholar 

  4. Seydanlou P, Jolai F, Tavakkoli-Moghaddam R, Fathollahi-Fard AM (2022) A multi-objective optimization framework for a sustainable closed-loop supply chain network in the olive industry: hybrid meta-heuristic algorithms. Expert Sys Appl 203:117566

  5. Li B, Li J, Tang K, Yao X (2015) Many-objective evolutionary algorithms: a survey. ACM Comput Surv 48(1):1–35

    Article  MathSciNet  Google Scholar 

  6. Deb K, Pratap A, Agarwal S, Meyarivan T (2002) A fast and elitist multiobjective genetic algorithm: NSGA-II. IEEE Trans Evol Comput 6(2):182–197

    Article  Google Scholar 

  7. Purshouse RC, Fleming PJ (2007) On the evolutionary optimization of many conflicting objectives. IEEE Trans Evol Comput 11(6):770–784

    Article  Google Scholar 

  8. Laumanns M, Thiele L, Deb K, Zitzler E (2002) Combining convergence and diversity in evolutionary multiobjective optimization. Evol Comput 10(3):263–282

    Article  Google Scholar 

  9. Ikeda K, Kita H, Kobayashi S (2001) Failure of Pareto-based MOEAs: does non-dominated really mean near to optimal? In: Proceedings ofthe IEEE Congress on Evolutionary Computation 2:957–962

  10. Garza Fabre M, Toscano Pulido G, Coello Coello CA (2009) Alternative fitness assignment methods for many-objective optimization problems. In: International conference on artificial evolution (Evolution Artificielle) 5975:146–157

  11. Tian Y, Cheng R, Zhang X, Su Y, Jin Y (2018) A strengthened dominance relation considering convergence and diversity for evolutionary many-objective optimization. IEEE Trans Evol Comput 23(2):331–345

    Article  Google Scholar 

  12. Qiu W, Zhu J, Wu G, Fan M, Suganthan PN (2021) Evolutionary many-objective algorithm based on fractional dominance relation and improved objective space decomposition strategy. Swarm Evol Comput 60:100776

    Article  Google Scholar 

  13. Li M, Yang S, Liu X (2013) Shift-based density estimation for Pareto-based algorithms in many-objective optimization. IEEE Trans Evol Comput 18(3):348–365

    Article  Google Scholar 

  14. Deb K, Jain H (2013) An evolutionary many-objective optimization algorithm using reference-point-based nondominated sorting approach, part I: solving problems with box constraints. IEEE Trans Evol Comput 18(4):577–601

    Article  Google Scholar 

  15. Cai X, Sun H, Zhang Q, Huang Y (2018) A grid weighted sum Pareto local search for combinatorial multi and many-objective optimization. IEEE Trans Cybern 49(9):3586–3598

    Article  Google Scholar 

  16. Zhang M, Li H (2018) A reference direction and entropy based evolutionary algorithm for many-objective optimization. Appl Soft Comput 70:108–130

    Article  Google Scholar 

  17. While L, Hingston P, Barone L, Huband S (2006) A faster algorithm for calculating hypervolume. IEEE Trans Evol Comput 10(1):29–38

    Article  Google Scholar 

  18. Bosman PA, Thierens D (2003) The balance between proximity and diversity in multiobjective evolutionary algorithms. IEEE Trans Evol Comput 7(2):174–188

    Article  Google Scholar 

  19. Trautmann H, Wagner T, Brockhoff D (2013) R2-EMOA: focused multiobjective search using R2-indicator-based selection. In: International conference on learning and intelligent optimization 7997:70–74

  20. Bader J, Zitzler E (2011) HypE: an algorithm for fast hypervolume-based many-objective optimization. Evol Comput 19(1):45–76

    Article  Google Scholar 

  21. Li F, Cheng R, Liu J, Jin Y (2018) A two-stage R2 indicator based evolutionary algorithm for many-objective optimization. Appl Soft Comput 67:245–260

    Article  Google Scholar 

  22. Menchaca-Mendez A, Coello Coello CA (2015) GD-MOEA: a new multi-objective evolutionary algorithm based on the generational distance indicator. In: International conference on evolutionary multi-criterion optimization 9018:156–170

  23. Li M, Yao X (2020) Quality evaluation of solution sets in multiobjective optimisation. ACM Comput Surv 52(2):1–38

    Article  Google Scholar 

  24. Zhang Q, Li H (2007) MOEA/D: a multiobjective evolutionary algorithm based on decomposition. IEEE Trans Evol Comput 11(6):712–731

    Article  Google Scholar 

  25. Murata T, Ishibuchi H, Gen M (2001) Specification of genetic search directions in cellular multi-objective genetic algorithms. In: International Conference on Evolutionary Multi-Criterion Optimization 1993:82–95

  26. Cheng R, Jin Y, Olhofer M, Sendhoff B (2016) A reference vector guided evolutionary algorithm for many-objective optimization. IEEE Trans Evol Comput 20(5):773–791

    Article  Google Scholar 

  27. Jiao R, Zeng S, Li C, Ong Y-S (2021) Two-type weight adjustments in MOEA/D for highly constrained many-objective optimization. Inf Sci 578:592–614

    Article  MathSciNet  Google Scholar 

  28. Zhao H, Zhang C, Zhang B, Duan P, Yang Y (2018) Decomposition-based sub-problem optimal solution updating direction-guided evolutionary many-objective algorithm. Inf Sci 448-449:91–111

    Article  MathSciNet  Google Scholar 

  29. Hua Y, Liu Q, Hao K, Jin Y (2021) A survey of evolutionary algorithms for multi-objective optimization problems with irregular Pareto fronts. IEEE CAA J Autom Sin 8(2):303–318

    Article  MathSciNet  Google Scholar 

  30. Wu M, Li K, Kwong S, Zhang Q (2018) Evolutionary many-objective optimization based on adversarial decomposition. IEEE Trans Cybern 50(2):753–764

    Article  Google Scholar 

  31. Wang Z, Zhang Q, Li H, Ishibuchi H, Jiao L (2017) On the use of two reference points in decomposition based multiobjective evolutionary algorithms. Swarm Evol Comput 34:89–102

    Article  Google Scholar 

  32. Cai X, Yang Z, Fan Z, Zhang Q (2016) Decomposition-based-sorting and angle-based-selection for evolutionary multiobjective and many-objective optimization. IEEE Trans Cybern 47(9):2824–2837

    Article  Google Scholar 

  33. Jiang S, Li H, Guo J, Zhong M, Yang S, Kaiser M, Krasnogor N (2020) AREA: an adaptive reference-set based evolutionary algorithm for multiobjective optimisation. Inf Sci 515:365–387

    Article  MathSciNet  MATH  Google Scholar 

  34. He Y, Peng H, Deng C, Dong X, Wu Z, Guo Z (2023) Reference point reconstruction-based firefly algorithm for irregular multi-objective optimization. Appl Intell 53(1):962–983

  35. Qi Y, Ma X, Liu F, Jiao L, Sun J, Wu J (2014) MOEA/D with adaptive weight adjustment. Evol Comput 22(2):231–264

    Article  Google Scholar 

  36. Cai X, Mei Z, Fan Z (2017) A decomposition-based many-objective evolutionary algorithm with two types of adjustments for direction vectors. IEEE Trans Cybern 48(8):2335–2348

    Google Scholar 

  37. Gu F, Cheung Y-M (2017) Self-organizing map-based weight design for decomposition-based many-objective evolutionary algorithm. IEEE Trans Evol Comput 22(2):211–225

    Article  Google Scholar 

  38. Liu Y, Ishibuchi H, Masuyama N, Nojima Y (2019) Adapting reference vectors and scalarizing functions by growing neural gas to handle irregular Pareto fronts. IEEE Trans Evol Comput 24(3):439–453

    Google Scholar 

  39. Liu Q, Jin Y, Heiderich M, Rodemann T, Yu G (2022) An adaptive reference vector-guided evolutionary algorithm using growing neural gas for Many-Objective Optimization of irregular problems. IEEE Trans Cybern 52(5):2698–2711

    Article  Google Scholar 

  40. Fritzke B (1994) A growing neural gas network learns topologies. Adv Neural Inf Proces Syst 7:625–632

    Google Scholar 

  41. Jain H, Deb K (2013) An evolutionary many-objective optimization algorithm using reference-point based nondominated sorting approach, part II: handling constraints and extending to an adaptive approach. IEEE Trans Evol Comput 18(4):602–622

    Article  Google Scholar 

  42. Cheng R, Li M, Tian Y, Zhang X, Yang S, Jin Y, Yao X (2017) A benchmark test suite for evolutionary many-objective optimization. Complex Intell Syst 3(1):67–81

    Article  Google Scholar 

  43. Zhang X (2021) A new decomposition-based many-objective algorithm based on adaptive reference vectors and fractional dominance relation. IEEE Access 9:152169–152181

    Article  Google Scholar 

  44. Tian Y, Cheng R, Zhang X, Jin Y (2017) PlatEMO: a MATLAB platform for evolutionary multi-objective optimization [educational forum]. IEEE Comput Intell Mag 12(4):73–87

    Article  Google Scholar 

  45. Tian Y, Cheng R, Zhang X, Cheng F, Jin Y (2017) An indicator-based multiobjective evolutionary algorithm with reference point adaptation for better versatility. IEEE Trans Evol Comput 22(4):609–622

    Article  Google Scholar 

  46. Xiang Y, Zhou Y, Li M, Chen Z (2016) A vector angle-based evolutionary algorithm for unconstrained many-objective optimization. IEEE Trans Evol Comput 21(1):131–152

    Article  Google Scholar 

  47. Sun Y, Yen GG, Yi Z (2018) IGD indicator-based evolutionary algorithm for many-objective optimization problems. IEEE Trans Evol Comput 23(2):173–187

    Article  Google Scholar 

  48. Tian Y, Si L, Zhang X, Tan KC, Jin Y (2022) Local model-based Pareto front estimation for multiobjective optimization. IEEE Trans Syst Man Cybern Syst 53(1):623–634

    Article  Google Scholar 

  49. Zitzler E, Thiele L (1998) Multiobjective optimization using evolutionary algorithms—a comparative case study. In: International conference on parallel problem solving from nature 1498:292–301

  50. Auger A, Bader J, Brockhoff D, Zitzler E (2009) Theory of the hypervolume indicator: optimal μ-distributions and the choice of the reference point. In: Proceedings of the tenth ACM SIGEVO workshop on foundations of genetic algorithms, pp 87–102

Download references

Acknowledgements

This work was supported in part by the National Natural Science Foundation of China under Grant No. 52074205 and Grant No. 51774228, in part by Shaanxi province fund for Distinguished Young Scholars under Grant No. 2020JC-44.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Qinghua Gu.

Ethics declarations

Conflicts of Interest

The authors declare that there are no conflicts of interest regarding the publication of this paper.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gu, Q., Pang, D. & Wang, Q. Evolutionary many-objective algorithm with improved growing neural gas and angle-penalized distance for irregular problems. Appl Intell 53, 19892–19921 (2023). https://doi.org/10.1007/s10489-023-04526-3

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10489-023-04526-3

Keywords

Navigation