Skip to main content
Log in

Capped norm linear discriminant analysis and its applications

  • Published:
Applied Intelligence Aims and scope Submit manuscript

Abstract

Classical linear discriminant analysis (LDA) is based on squared Frobenious norm and hence is sensitive to outliers and noise. To improve the robustness of LDA, this paper introduces a capped l2,1-norm of a matrix, which employs non-squared l2-norm and “capped” operation, and further proposes a novel capped l2,1-norm linear discriminant analysis, called CLDA. Due to the use of capped l2,1-norm, CLDA can effectively remove extreme outliers and suppress the effect of noise data. In fact, CLDA can also be viewed as a weighted LDA and is solved through a series of generalized eigenvalue problems. The experimental results on an artificial data set, some UCI data sets and two image data sets demonstrate the effectiveness of CLDA.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Algorithm 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

Data Availability

The data that support the findings of this study are openly available in https://archive.ics.uci.edu/ml/datasets.php and Coil100 and USPS data sets are available on request from the authors.

References

  1. Fisher RA (1936) The use of multiple measurements in taxonomic problems. Ann Eugen 7 (2):179–188

    Article  Google Scholar 

  2. Fukunaga K (1991) Introduction To Statistical Pattern Recognition, 2nd edn. Academic Press, New York

    MATH  Google Scholar 

  3. Ibrahim W, Abadeh MS (2019) Protein fold recognition using deep kernelized extreme learning machine and linear discriminant analysis. Neural Comput Appl 31(8):4201–4214

    Article  Google Scholar 

  4. Gutiérrez-Reguera F, Jurado JM, Montoya-Mayor R et al (2018) Geographical classification of Spanish bottled mineral waters by means of iterative models based on linear discriminant analysis and artificial neural networks. Neural Comput Appl 29(2):459–468

    Article  Google Scholar 

  5. Tao D, Li X, Wu X et al (2007) General tensor discriminant analysis and gabor features for gait recognition. IEEE Trans Pattern Anal Mach Intell 29(10):1700–1715

    Article  Google Scholar 

  6. Wan H, Wang H, Guo G et al (2017) Separability-oriented subclass discriminant analysis. IEEE Trans Pattern Anal Mach Intell 40(2):409–422

    Article  Google Scholar 

  7. Khanbebin SN, Mehrdad V (2020) Local improvement approach and linear discriminant analysis-based local binary pattern for face recognition. Neural Comput Appl:1–17

  8. Chen LF, Liao HYM, Ko MT et al (2000) A new LDA-based face recognition system which can solve the small sample size problem. Pattern Recogn 33(10):1713–1726

    Article  Google Scholar 

  9. Yu H, Yang J (2001) A direct LDA algorithm for high-dimensional data<a̱with application to face recognition. Pattern Recogn 34(10):2067–2070

    Article  MATH  Google Scholar 

  10. Swets DL, Weng JJ (1996) Using discriminant eigenfeatures for image retrieval. IEEE Trans Pattern Anal Mach Intell 18(8):831–836

    Article  Google Scholar 

  11. Lai Z, Mo D, Wong WK et al (2018) Robust discriminant regression for feature extraction. IEEE Trans Cybern 48(8):2472–2484

    Article  Google Scholar 

  12. Randles RH, Broffitt JD, Ramberg JS et al (1978) Generalized linear and quadratic discriminant functions using robust estimates. Publ Am Stat Assoc 73(363):564–568

    Article  MATH  Google Scholar 

  13. Friedman JH (1989) Regularized discriminant analysis. J Amer Stat Assoc 84(405):165–175

    Article  MathSciNet  Google Scholar 

  14. Hubert M, Van Driessen K (2004) Fast and robust discriminant analysis. Computat Stat Data Anal 45(2):301–320

    Article  MathSciNet  MATH  Google Scholar 

  15. Yu S, Cao Z, Jiang X (2017) Robust linear discriminant analysis with a Laplacian assumption on projection distribution. IEEE Int Conf Acoustics Speech Signal Process (ICASSP):2567–2571

  16. Kim SJ, Magnani A, Boyd S (2005) Robust fisher discriminant analysis. Adv Neural Inf Process Syst:659–666

  17. Sugiyama M (2007) Dimensionality reduction of multimodal labeled data by local fisher discriminant analysis. J Mach Learn Res 8(1):1027–1061

    MATH  Google Scholar 

  18. Wang Z, Ruan Q, An G (2015) Projection-optimal local fisher discriminant analysis for feature extraction. Neural Comput Appl 26(3):589–601

    Article  Google Scholar 

  19. Zhang Z, Chow TWS (2012) Robust linearly optimized discriminant analysis. Neurocomputing 79(3):140–157

    Google Scholar 

  20. Okwonu FZ, Othman AR (2013) Comparative performance of classical fisher linear discriminant analysis and robust fisher linear discriminant analysis. Matematika 29:213–220

    MathSciNet  Google Scholar 

  21. Zhong F, Zhang J (2013) Linear discriminant analysis based on L1-norm maximization. IEEE Trans Image Process 22(8):3018–3027

    Article  MathSciNet  MATH  Google Scholar 

  22. Wang H, Lu X, Hu Z et al (2014) Fisher discriminant analysis with L1-norm. IEEE Trans Cybern 44(6):828–842

    Article  Google Scholar 

  23. Liu Y, Gao Q, Miao S et al (2017) A non-greedy algorithm for L1-norm LDA. IEEE Trans Image Process 26(2):684–695

    Article  MathSciNet  MATH  Google Scholar 

  24. Ye Q, Yang J, Liu F et al (2018) L1-norm distance linear discriminant analysis based on an effective iterative algorithm. IEEE Trans Circuits Syst Vid Technol 28(1):114–129

    Article  Google Scholar 

  25. Chen X, Yang J, Jin Z (2014) An improved linear discriminant analysis with L1-norm for robust feature extraction. 22nd IEEE Int Conf Pattern Recognit:1585–1590

  26. Li CN, Zheng ZR, Liu MZ et al (2017) Robust recursive absolute value inequalities discriminant analysis with sparseness. Neural Netw 93:205–218

    Article  MATH  Google Scholar 

  27. Li CN, Shao YH, Yin W (2020) Etc. Robust and sparse linear discriminant analysis via an alternating direction method of multipliers. IEEE Trans Neural Netw Learn Syst 31(3):915–926

    Article  Google Scholar 

  28. Zhang D, Sun Y, Ye Q et al (2020) Recursive discriminative subspace learning with L1-norm distance constraint. IEEE Trans Cybern 50(5):2138–2151

    Article  Google Scholar 

  29. Zheng W, Lin Z, Wang H (2014) L1-norm kernel discriminant analysis via Bayes error bound optimization for robust feature extraction. IEEE Trans Neural Netw Learn Syst 25(4):793–805

    Article  Google Scholar 

  30. Li CN, Shao YH, Wang Z et al (2019) Robust Bhattacharyya bound linear discriminant analysis through an adaptive algorithm. Knowl-Based Syst 183:104858

    Article  Google Scholar 

  31. Oh JH, Kwak N (2013) Generalization of linear discriminant analysis using Lp-norm. Pattern Recogn Lett 34(6):679–685

    Article  Google Scholar 

  32. Ye Q, Fu L, Zhang Z et al (2018) Lp-and Ls-norm distance based robust linear discriminant analysis. Neural Netw 105:393–404

    Article  MATH  Google Scholar 

  33. Li CN, Shao YH, Wang Z et al (2019) Robust bilateral Lp-norm two-dimensional linear discriminant analysis. Inf Sci 500:274–297

    Article  MathSciNet  MATH  Google Scholar 

  34. Li CN, Shao YH, Deng NY (2015) Robust L1-norm two-dimensional linear discriminant analysis. Neural Netw 65:92–104

    Article  MATH  Google Scholar 

  35. Chen SB, Chen DR, Luo B (2015) L1-norm based two-dimensional linear discriminant analysis (In Chinese). J Electron Inf Technol 37(6):1372–1377

    Google Scholar 

  36. Li M, Wang J, Wang Q et al (2017) Trace ratio 2DLDA with L1-norm optimization. Neurocomputing 266(29):216–225

    Article  Google Scholar 

  37. Li CN, Shang MQ, Shao YH et al (2019) Sparse L1-norm two dimensional linear discriminant analysis via the generalized elastic net regularization[J]. Neurocomputing 337:80–96

    Article  Google Scholar 

  38. Ding C, Zhou D, He X et al (2006) R1-PCA: rotational invariant L1-norm principal component analysis for robust subspace factorization. In: Proceedings of the 23rd international conference on machine learning (ICML)

  39. Li X, Hu W, Wang H et al (2010) Linear discriminant analysis using rotational invariant l1 norm. Neurocomputing 73(13-15):2571–2579

    Article  Google Scholar 

  40. Nie F, Huang H, Cai X et al (2010) Efficient and robust feature selection via joint 2,1-norms minimization. Adv Neural Inf Process Syst:1813–1821

  41. Yang Z, Ye Q, Chen Q et al (2020) Robust discriminant feature selection via joint \({\mathscr{L}}_{2,1}\)-norm distance minimization and maximization. Knowl-Based Syst:106090

  42. Lan G, Hou C, Nie F et al (2018) Robust feature selection via simultaneous sapped norm and sparse regularizer minimization. Neurocomputing 283:228–240

    Article  Google Scholar 

  43. Ma X, Zhao M, Zhang Z et al (2018) Anchored projection based capped l2,1-norm regression for super-resolution. In: Pacific rim international conference on artificial intelligence. Springer, Cham, pp 10–18

  44. Zhao M, Zhang Z, Zhan C, et al. (2017) Graph based semi-supervised classification via capped l2,1-norm regularized dictionary learning. In: 2017 IEEE 15th international conference on industrial informatics (INDIN). IEEE, pp 1019–1024

  45. Nie F, Wang X, Huang H (2017) Multiclass capped lp-norm SVM for robust classifications. Thirty-first AAAI Conf Artif Intell:2415–2421

  46. Lai Z, Liu N, Shen L et al (2018) Robust locally discriminant analysis via capped norm. IEEE Access 7:4641–4652

    Article  Google Scholar 

  47. Wang Z, Nie F, Zhang C et al (2020) Capped p-norm LDA for outliers robust dimension reduction. IEEE Signal Process Lett 27:1315–1319

    Article  Google Scholar 

  48. Gao H, Nie F, Cai W, et al. (2015) Robust capped norm nonnegative matrix factorization: capped norm NMF. In: Proceedings of the 24th ACM international on conference on information and knowledge management, pp 871–880

  49. Zhang F, Yang Z, Chen Y et al (2018) Matrix completion via capped nuclear norm. IET Image Process 12(6):959– 966

    Article  Google Scholar 

  50. Sun Q, Xiang S, Ye J (2013) Robust principal component analysis via capped norms. In: Proceedings of the 19th ACM SIGKDD international conference on knowledge discovery and data mining, pp 311–319

  51. Sun W, Huang Y, Huang L et al (2761) l2,p-Correlation and robust matching pursuit for sparse approximation. Digital Signal Process 104(10):2020

    Google Scholar 

  52. Li T, Li M, Gao Q et al (2017) F-norm distance metric based robust 2DPCA and face recognition. Neural Netw 94:204– 211

    Article  MATH  Google Scholar 

Download references

Acknowledgements

This work is supported by the Hainan Provincial Natural Science Foundation of China (No.620QN234 and No.120RC449), and the National Natural Science Foundation of China (No.62066012, No.12271131.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chun-Na Li.

Ethics declarations

Conflict of Interests

The authors declare that there is not any conflict of interest in this manuscript.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, J., Xiong, X., Ren, P. et al. Capped norm linear discriminant analysis and its applications. Appl Intell 53, 18488–18507 (2023). https://doi.org/10.1007/s10489-022-04395-2

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10489-022-04395-2

Keywords

Navigation