Skip to main content
Log in

Identification of fractional order Wiener-Hammerstein systems based on adaptively fuzzy PSO and data filtering technique

  • Published:
Applied Intelligence Aims and scope Submit manuscript

Abstract

This paper investigates the parameter estimation of fractional order Wiener-Hammerstein (FWH) nonlinear systems with colored noises. By employing data filtering, the original system with autoregressive moving average noise is filtered to the system with moving average noise; then, particle swarm optimization (PSO) is applied to identify the filtered system. To enhance the algorithm’s performance, the adaptively variable weight, dynamic learning factors and fuzzy control are introduced to construct the data filtering-based adaptively fuzzy PSO (DF-AFPSO) method. For a FWH system with known fractional order, DF-AFPSO is employed to identify the parameter vector, which consists of linear and nonlinear parameters. Furthermore, for a FWH system with unknown fractional order, DF-AFPSO can simultaneously estimate the parameter vector and fractional order by utilizing its parallel search ability. Finally, two simulation cases are designed to test the effectiveness of the proposed algorithm. The results illustrate that the DF-AFPSO method has higher accuracy in identifying FWH systems than the standard PSO and data filtering-based PSO methods.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Data Availability

This manuscript has no associated data.

References

  1. Guo W, Xu P, Dai F, Hou Z (2022) Harris hawks optimization algorithm based on elite fractional mutation for data clustering. Applied Intelligence. https://doi.org/10.1007/s10489-021-02985-0https://doi.org/10.1007/s10489-021-02985-0

  2. George T, Ganesan V (2022) Optimal tuning of FOPID controller for higher order process using hybrid approach. Applied Intelligence. https://doi.org/10.1007/s10489-022-03167-2

  3. Xia ZQ, Wang XY, Wang CP, Wang CX, Ma B, Li Q, Wang MX, Zhao TT (2022) A robust zero-watermarking algorithm for lossless copyright protection of medical images. Appl Intell 52:607–621

    Article  Google Scholar 

  4. Zhang Q, Wang HW, Liu CL (2021) Identification of fractional-order Hammerstein nonlinear ARMAX system with colored noise. Nonlinear Dyn 106(4):3215–3230

    Article  Google Scholar 

  5. Galvão RKH, Teixeira MCM, Assunção E, Paiva HM, Hadjiloucas S (2020) Identification of fractional-order transfer functions using exponentially modulated signals with arbitrary excitation waveforms. ISA Trans 103:10–18

    Article  Google Scholar 

  6. Wang JW, Ji Y, Zhang C (2021) Iterative parameter and order identification for fractional-order nonlinear finite impulse response systems using the key term separation. Int J Adapt Control Signal Process 35 (8):1562–1577

    Article  MathSciNet  Google Scholar 

  7. Li LW, Ren XM (2020) Parameter identification based on prescribed estimation error performance for extended Wiener-Hammerstein systems. IET Control Theory Appl 14(2):304–312

    Article  MathSciNet  Google Scholar 

  8. S̆krjanc I (2021) An evolving concept in the identification of an interval fuzzy model of Wiener-Hammerstein nonlinear dynamic systems. Inf Sci 581:73–87

    Article  MathSciNet  Google Scholar 

  9. Liu Q, Tang XM, Li JH, Zeng JX, Zhang K, Chai Y (2021) Identification of Wiener-Hammerstein models based on variational bayesian approach in the presence of process noise. J Frankl Inst 358 (10):5623–5638

    Article  MathSciNet  MATH  Google Scholar 

  10. Shaikh MAH, Barbé K (2021) Study of random forest to identify Wiener-Hammerstein system. IEEE Trans Instrum Meas 70:1–12

    Article  Google Scholar 

  11. Yu WN, Shao YM, Xu J, Mechefske C (2022) An adaptive and generalized Wiener process model with a recursive filtering algorithm for remaining useful life estimation. Reliab Eng Syst Saf 217:09518320

    Article  Google Scholar 

  12. Ji Y, Kang Z, Liu X (2021) The data filtering based multiple-stage Levenberg-Marquardt algorithm for Hammerstein nonlinear systems. Int J Robust Nonlinear Control 31(15):7007–7025

    Article  MathSciNet  Google Scholar 

  13. Xu H, Ma FY, Ding F, Xu L, Alsaedi A, Hayat T (2020) Data filtering-based recursive identification for an exponential autoregressive moving average model by using the multi-innovation theory. IET Control Theory Appl 14(17):2526–2534

    Article  MathSciNet  Google Scholar 

  14. Liu LJ, Liu HB, Ding F, Alsaedi A, Hayat T (2020) Data filtering based maximum likelihood gradient estimation algorithms for a multivariate equation-error system with ARMA noise. J Frankl Inst 357 (9):5640–5662

    Article  MathSciNet  MATH  Google Scholar 

  15. Cui YY, Meng X, Qiao JF (2022) A multi-objective particle swarm optimization algorithm based on two-archive mechanism. Appl Soft Comput 108532:119

    Google Scholar 

  16. Ajdad H, Baba YF, Mers AA, Merroun O, Bouatem A, Boutammachte N (2019) Particle swarm optimization algorithm for optical-geometric optimization of linear fresnel solar concentrators. Renew Energy 130:992–1001

    Article  Google Scholar 

  17. Moodia M, Ghazvini M, Moodi H (2021) A hybrid intelligent approach to detect Android botnet using smart self-adaptive learning-based PSO-SVM. Knowl-Based Syst 222:106988

    Article  Google Scholar 

  18. Zhang B, Tang Y, Zhang X, Lu Y (2021) Operational matrix based set-membership method for fractional order systems parameter identification. J Frankl Inst 358(18):10141–10164

    Article  MathSciNet  MATH  Google Scholar 

  19. Victor S, Mayoufi A, Malti R, Chetoui M, Aoun M (2022) System identification of MISO fractional systems: Parameter and differentiation order estimation. Automatica 141:110268

    Article  MathSciNet  MATH  Google Scholar 

  20. Yang C, Gao Z, Li X, Huang X (2021) Adaptive fractional-order Kalman filters for continuous-time nonlinear fractional-order systems with unknown parameters and fractional-orders. Int J Syst Sci 52 (13):2777–2797

    Article  MathSciNet  MATH  Google Scholar 

  21. Janjanam L, Saha SK, Kar R, Mandal D (2022) Optimal design of cascaded Wiener-Hammerstein system using a heuristically supervised discrete Kalman filter with application on benchmark problems. Expert Syst Appl 200:117065

    Article  Google Scholar 

  22. Guo J, Zhao YL (2021) Identification for Wiener-Hammerstein systems under quantized inputs and quantized output observations. Asian J Control 23(1):118–127

    Article  MathSciNet  Google Scholar 

  23. Hammar K, Djamah T, Bettayeb M (2019) Nonlinear system identification using fractional Hammerstein-Wiener models. Nonlinear Dyn 98(3):2327–2338

    Article  MATH  Google Scholar 

  24. Zong TC, Li JH, Lu GP (2021) Auxiliary model-based multi-innovation PSO identification for Wiener-Hammerstein systems with scarce measurements. Eng Appl Artif Intell 106:104470

    Article  Google Scholar 

  25. Ding F, Xu L, Alsaadi FE, Hayat T (2018) Iterative parameter identification for pseudo-linear systems with ARMA noise using the filtering technique. IET Control Theory Appl 12(7):892–899

    Article  MathSciNet  Google Scholar 

  26. Li JH, Zong TC, Gu JP, Hua L (2020) Parameter estimation of Wiener systems based on the particle swarm iteration and gradient search principle. Circuits Syst Signal Process 39:3470–3495

    Article  MATH  Google Scholar 

  27. Cheng ML, Liu B (2021) Application of an extended VES production function model based on improved PSO algorithm. Soft Comput 25(12):7937–7945

    Article  MATH  Google Scholar 

  28. Zou LR (2021) Design of reactive power optimization control for electromechanical system based on fuzzy particle swarm optimization algorithm. Microprocess Microsyst 82:103865

    Article  Google Scholar 

  29. Li J, Zong T, Lu G (2022) Parameter identification of Hammerstein-Wiener nonlinear systems with unknown time delay based on the linear variable weight particle swarm optimization. ISA Trans 120:89–98

    Article  Google Scholar 

  30. Rodrigues F, Molina Y, Silva C, Ñaupari Z (2021) Simultaneous tuning of the AVR and PSS parameters using particle swarm optimization with oscillating exponential decay. Int J Electr Power Energy Syst 133:107251

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported in part by the National Natural Science Foundation of China (61973176, 62073180), the Six Talent Peaks Project in Jiangsu Province (XYDXX-038), the Natural Science Research Program of Jiangsu Colleges and Universities (20KJA470002), and the Postgraduate Research & Practice Innovation Program of Jiangsu Province (KYCX21_3083).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Junhong Li or Guoping Lu.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zong, T., Li, J. & Lu, G. Identification of fractional order Wiener-Hammerstein systems based on adaptively fuzzy PSO and data filtering technique. Appl Intell 53, 14085–14101 (2023). https://doi.org/10.1007/s10489-022-04220-w

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10489-022-04220-w

Keywords

Navigation