Skip to main content
Log in

Local sharpness failure detection of camera module lens based on image blur assessment

  • Published:
Applied Intelligence Aims and scope Submit manuscript

Abstract

Videos and images have been widely used, and the requirements for camera imaging quality are getting higher and higher. At present, most methods of camera lens sharpness testing are divided into five areas: upper left, lower left, upper right, lower right, and middle. The test results of each area are used to approximate the overall sharpness level of the camera lens. The local sharpness failure of the camera lens cannot be solved by these methods. Because of this limitation, we proposed the idea of indirectly reflecting the local sharpness of the lens according to the image blur detection, and develop an image blur assessment method based on intensity and derivative (IDD). It can visualize the degradation process of camera sharpness from center to edge and the location of local failure. We demonstrate the feasibility and accuracy of the method through a case, as well as comparison to other methods.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Sun C, Ai Y, Wang S, Zhang W (2021) Mask-guided SSD for small-object detection. Appl Intell 51:3311–3322. https://doi.org/10.1007/s10489-020-01949-0

    Article  Google Scholar 

  2. Mao Q-C, Sun H-M, Zuo L-Q, Jia R-S (2020) Finding every car: a traffic surveillance multi-scale vehicle object detection method. Appl Intell 50:3125–3136. https://doi.org/10.1007/s10489-020-01704-5

    Article  Google Scholar 

  3. Huang W, Gu J, Ma X, Li Y (2020) End-to-end multitask Siamese network with residual hierarchical attention for real-time object tracking. Appl Intell 50:1908–1921. https://doi.org/10.1007/s10489-019-01605-2

    Article  Google Scholar 

  4. Gao L, Liu B, Fu P, Xu M, Li J (2021) Visual tracking via dynamic saliency discriminative correlation filter. Appl Intell 52:5897–5911. https://doi.org/10.1007/s10489-021-02260-2

    Article  Google Scholar 

  5. Elharrouss O, Almaadeed N, Al-Maadeed S et al (2021) A combined multiple action recognition and summarization for surveillance video sequences. Appl Intell 51:690–712. https://doi.org/10.1007/s10489-020-01823-z

    Article  Google Scholar 

  6. Zhang X-Y, Huang Y-P, Mi Y, Pei YT, Zou Q, Wang S (2021) Video sketch: a middle-level representation for action recognition. Appl Intell 51:2589–2608. https://doi.org/10.1007/s10489-020-01905-y

    Article  Google Scholar 

  7. Wang F, Ai Y, Zhang W (2021) Detection of early dangerous state in deep water of indoor swimming pool based on surveillance video. SIViP 16:29–37. https://doi.org/10.1007/s11760-021-01953-y

    Article  Google Scholar 

  8. ISO 12233:(2017) (en), Photography — Electronic still picture imaging — Resolution and spatial frequency responses. https://www.iso.org/obp/ui/#iso:std:iso:12233:ed-3:v1:en. Accessed 6 Jul 2021

  9. Williams D, Wueller D, Matherson K, et al (2008) A pilot study of digital camera resolution metrology protocols proposed under ISO 12233, 2nd edn. SPIE 680804. https://doi.org/10.1117/12.768204

  10. IEEE 1858-2016 - IEEE standard for camera phone image quality (2021) https://standards.ieee.org/standard/1858-2016.html. Accessed 6 Jul 2021

  11. Estribeau M, Magnan P (2004) Fast MTF measurement of CMOS imagers at the chip level using ISO 12233 slanted-edge methodology. SPIE 557–567. https://doi.org/10.1117/12.565503

  12. Artmann U (2016) Linearization and normalization in spatial frequency response measurement. Electronic Imaging 13:1–6. https://doi.org/10.2352/ISSN.2470-1173.2016.13.IQSP-011

    Article  Google Scholar 

  13. Lin Z, Lei Z, Mou X, Zhang D (2011) FSIM: a feature similarity index for image quality assessment. IEEE Trans Image Process 20:2378–2386

    Article  MathSciNet  MATH  Google Scholar 

  14. Wang Z, Bovik AC, Sheikh HR, Simoncelli EP (2004) Image quality assessment: from error visibility to structural similarity. IEEE Trans Image Process 13:600–612. https://doi.org/10.1109/TIP.2003.819861

    Article  Google Scholar 

  15. Soundararajan R, Bovik AC (2012) RRED indices: reduced reference entropic differencing for image quality assessment. IEEE Trans Image Process 21:517–526. https://doi.org/10.1109/TIP.2011.2166082

    Article  MathSciNet  MATH  Google Scholar 

  16. Wang Z, Simoncelli E (2005) Reduce-reference image quality assessment using a wavelet-domain natural image statistic model. Proc SPIE - Int Soc Opt Eng 5666. https://doi.org/10.1117/12.597306

  17. Kim J, Nguyen A-D, Lee S (2019) Deep CNN-based blind image quality predictor. IEEE Trans Neural Netw Learning Syst 30:11–24. https://doi.org/10.1109/TNNLS.2018.2829819

    Article  Google Scholar 

  18. Kim J, Lee S (2017) Fully deep blind image quality predictor. IEEE J Sel Top Signal Process 11:206–220. https://doi.org/10.1109/JSTSP.2016.2639328

    Article  Google Scholar 

  19. Hosu V, Lin H, Sziranyi T, Saupe D (2020) KonIQ-10k: an ecologically valid database for deep learning of blind image quality assessment. IEEE Trans Image Process 29:4041–4056. https://doi.org/10.1109/TIP.2020.2967829

    Article  MATH  Google Scholar 

  20. Golestaneh SA, Kitani K (2020) No-reference image quality assessment via feature fusion and multi-task learning. https://doi.org/10.48550/arXiv.2006.03783

  21. Mittal A, Moorthy AK, Bovik AC (2012) No-reference image quality assessment in the spatial domain. IEEE Trans Image Process 21:4695–4708. https://doi.org/10.1109/TIP.2012.2214050

    Article  MathSciNet  MATH  Google Scholar 

  22. Moorthy AK, Bovik AC (2010) A two-step framework for constructing blind image quality indices. IEEE Signal Processing Letters 17:513–516. https://doi.org/10.1109/LSP.2010.2043888

    Article  Google Scholar 

  23. Xue W, Mou X, Zhang L, Bovik AC, Feng X (2014) Blind image quality assessment using joint statistics of gradient magnitude and Laplacian features. IEEE Trans Image Process 23:4850–4862. https://doi.org/10.1109/TIP.2014.2355716

    Article  MathSciNet  MATH  Google Scholar 

  24. Saad MA, Bovik AC, Charrier C (2012) Blind image quality assessment: a natural scene statistics approach in the DCT domain. IEEE Trans Image Process 21:3339–3352. https://doi.org/10.1109/TIP.2012.2191563

    Article  MathSciNet  MATH  Google Scholar 

  25. Wu Q, Li H, Meng F, Ngan KN, Luo B, Huang C, Zeng B (2016) Blind image quality assessment based on multichannel feature fusion and label transfer. IEEE Trans Circuits Syst Video Technol 26:425–440. https://doi.org/10.1109/TCSVT.2015.2412773

    Article  Google Scholar 

  26. Ye P, Kumar J, Kang L, Doermann D (2012) Unsupervised feature learning framework for no-reference image quality assessment. In: 2012 IEEE conference on computer vision and pattern recognition. 1098–1105. https://doi.org/10.1109/CVPR.2012.6247789

  27. Moorthy AK, Bovik AC (2011) Blind image quality assessment: from natural scene statistics to perceptual quality. IEEE Trans Image Process 20:3350–3364. https://doi.org/10.1109/TIP.2011.2147325

    Article  MathSciNet  MATH  Google Scholar 

  28. Zhang L, Zhang L, Bovik AC (2015) A feature-enriched completely blind image quality evaluator. IEEE Trans Image Process 24:2579–2591. https://doi.org/10.1109/TIP.2015.2426416

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Yibo Ai or Weidong Zhang.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix 1

Appendix 1

In Section 4, we compare the test results of seven reference-free image blur detection methods. The calculation process of the seven methods is as follows:

  1. 1.

    Sobel:

Image Src convolute with 3*3 sobel operator. The average value after convolution is taken as the index of blur detection. The smaller the value, the more blurry the image.

$$ {\displaystyle \begin{array}{c}G=\frac{1}{2}\times \left({G}_H+{G}_V\right)\\ {}=\frac{1}{2}\times \left(\left[\begin{array}{ccc}-1& 0& 1\\ {}-2& 0& 2\\ {}-1& 0& 1\end{array}\right]\ast Src+\left[\begin{array}{ccc}-1& -2& -1\\ {}0& 0& 0\\ {}1& 2& 1\end{array}\right]\ast Src\right)\end{array}} $$
(19)

Where GH is the horizontal blur degree, GV is the vertical blur degree.

  1. 2.

    Tenegrad:

Similar to Sobel method. The smaller the value, the more blurry the image.

$$ {\displaystyle \begin{array}{c}G=\sqrt{G_H^2+{G}_V^2}\\ {}=\sqrt{{\left(\left[\begin{array}{ccc}-1& 0& 1\\ {}-2& 0& 2\\ {}-1& 0& 1\end{array}\right]\ast Src\right)}^2+\Big(\left[\begin{array}{ccc}-1& -2& -1\\ {}0& 0& 0\\ {}1& 2& 1\end{array}\right]\ast Src}\Big){}^2\end{array}} $$
(20)
  1. 3.

    Laplacian:

Using Laplacian to detect image blur is to conclute the imageSrcwith Laplacian operator:

$$ {\displaystyle \begin{array}{c}L=\frac{1}{2}\times \left({L}_H+{L}_V\right)\\ {}=\frac{1}{2}\times \left(\left[\begin{array}{ccc}-1& 2& -1\\ {}-1& 2& -1\\ {}-1& 2& -1\end{array}\right]\ast Src+\left[\begin{array}{ccc}-1& -1& -1\\ {}2& 2& 2\\ {}-1& -1& -1\end{array}\right]\ast Src\right)\end{array}} $$
(21)
  1. 4.

    Brenner:

  2. 5.
    $$ {B}_H=\sum \limits_x\sum \limits_y\mid f\left(x,y+2\right)-f\left(x,y\right)\mid $$
    (22)
  3. 6.
    $$ {B}_V=\sum \limits_x\sum \limits_y\mid f\left(x+2,y\right)-f\left(x,y\right)\mid $$
    (23)

Where BH is the horizontal blur degree, BV is the vertical blur degree. The smaller the value, the more blurry the image.

  1. 7.

    Gray-scale variance:

This method only has the overall blur indexD:

$$ GV=\sum \limits_x\sum \limits_y\left(|f\left(x,y\right)-f\left(x,y-1\right)|+|f\left(x,y\right)-f\left(x+1,y\right)|\right) $$
(24)
  1. 8.

    Energy gradient:

Similar to method 5. This method also only has the overall blur indexE:

$$ E=\sum \limits_y\sum \limits_x\left({\left|f\left(x+1,y\right)-f\Big(x,y\Big)\right|}^2+{\left|f\Big(x,y+1\left)-f\right(x,y\Big)\right|}^2\right) $$
(25)
  1. 9.

    Vollath:

  2. 10.
    $$ V=\sum \sum f\left(x,y\right)\ast f\left(x+1,y\right)-M\ast N\ast {\mu}^2 $$
    (26)

Where M, N is the size of image, and μ is the average of image pixels.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, F., Chen, J., Xie, Z. et al. Local sharpness failure detection of camera module lens based on image blur assessment. Appl Intell 53, 11241–11250 (2023). https://doi.org/10.1007/s10489-022-03948-9

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10489-022-03948-9

Keywords

Navigation