Skip to main content
Log in

Feature selection method for color image steganalysis based on fuzzy neighborhood conditional entropy

  • Published:
Applied Intelligence Aims and scope Submit manuscript

Abstract

The color image steganalysis method creats many redundant features during feature extraction, which reduces the classification accuracy. To reduce the dimensionality of color image steganalysis features and improve classification accuracy, this paper proposes the C-FNCES method. First, we use the Fisher score to evaluate the importance of each feature, providing the basis for selecting the features of color image steganalysis. Second, the fuzzy neighborhood decision information system is introduced into the color image steganalysis feature since it can effectively process continuous data. The decision information system of color image steganalysis based on a fuzzy neighborhood is constructed. Then, we propose the fuzzy neighborhood conditional entropy model. The model is used to evaluate the role of features, providing a theoretical basis for feature selection in color image steganalysis. Finally, according to the Fisher score and fuzzy neighborhood condition entropy model, a steganalysis feature selection algorithm is designed. Our experiment showed that the C-FNCES method can not only effectively reduce the feature dimension but also improve the classification accuracy, which is better than the Steganalysis-α and CGSM methods.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Notes

  1. http://agents.fel.cvut.cz/stegodata/RAWs/

References

  1. Chen Y, Chen Y, Yin A (2019) Feature selection for blind image steganalysis using neighborhood rough sets. J Intell Fuzzy Syst 37(3):3709–3720. https://doi.org/10.3233/JIFS-182836

    Article  Google Scholar 

  2. Filler T, Fridrich J (2010) Gibbs construction in steganography. IEEE Trans Inf Forensic Secur 5(4):705–720. https://doi.org/10.1109/TIFS.2010.2077629

    Article  Google Scholar 

  3. Holub V, Fridrich J, Denemark T (2014) Universal distortion function for steganography in an arbitrary domain. Eurasip J Inf Secur 2014(1):1. https://doi.org/10.1186/1687-417X-2014-1

    Article  Google Scholar 

  4. Holub V, Fridrich J (2012) Designing steganographic distortion using directional filters. In: IEEE workshop on information forensic and security. https://doi.org/10.1109/WIFS.2012.6412655

  5. Wang Y, Ma Y, Jin R, Liu P, Ning R (2020) Comprehensive criteria-based generalized steganalysis feature selection method. IEEE Access PP(99):1–1. https://doi.org/10.1109/ACCESS.2020.3018709

  6. Song X, Liu F, Yang C, Luo X, Zhang Y (2015) Steganalysis of adaptive jpeg steganography using 2d gabor filters. In: Proceedings of the 3rd ACM workshop on information hiding and multimedia security, pp 15–23. https://doi.org/10.1145/2756601.2756608

  7. Denemark T, Sedighi V, Holub V, Cogranne R, Fridrich J (2014) Selection-channel-aware rich model for steganalysis of digital images. In: 2014 IEEE international workshop on information forensics and security (WIFS). IEEE, pp 48–53. https://doi.org/10.1109/WIFS.2014.7084302

  8. Denemark T, Fridrich J, Comesaña-Alfaro P (2016) Improving selection-channel-aware steganalysis features. Electr Imaging 2016(8):1–8. https://doi.org/10.2352/ISSN.2470-1173.2016.8.MWSF-080

    Google Scholar 

  9. Yu J, Li F, Cheng H, Zhang X (2016) Spatial steganalysis using contrast of residuals. IEEE Signal Process Lett 23(7):989–992. https://doi.org/10.1109/LSP.2016.2575100

    Article  Google Scholar 

  10. Kang Y, Liu F, Yang C, Luo X, Zhang T (2019) Color image steganalysis based on residuals of channel differences. Comput Mater Continua 59(1):315–329. https://doi.org/10.32604/cmc.2019.05242

    Article  Google Scholar 

  11. Lyu S, Farid H (2004) Steganalysis using color wavelet statistics and one-class support vector machines. In: Security, steganography, and watermarking of multimedia contents VI. https://doi.org/10.1117/12.526012

  12. Goljan M, Fridrich J, Cogranne R (2015) Rich model for steganalysis of color images. In: 2014 IEEE international workshop on information forensics and security (WIFS). https://doi.org/10.1109/WIFS.2014.7084325

  13. Abdulrahman H, Chaumont M, Montesinos P, Magnier B (2015) Color image stegananalysis using correlations between rgb channels. In: 2015 10th international conference on availability, reliability and security. IEEE, pp 448–454. https://doi.org/10.1109/ARES.2015.44

  14. Abdulrahman H, Chaumont M, Montesinos P, Magnier B (2016a) Color image steganalysis based on steerable gaussian filters bank. In: Proceedings of the 4th ACM workshop on information hiding and multimedia security, pp 109–114. https://doi.org/10.1145/2909827.2930799

  15. Abdulrahman H, Chaumont M, Montesinos P, Magnier B (2016b) Color images steganalysis using rgb channel geometric transformation measures. Secur Commun Netw 9 (15):2945–2956. https://doi.org/10.1002/sec.1427

    Article  Google Scholar 

  16. Ma Y, Xu J, Yang C, Luo X (2021) Rich model steganalysis feature selection method based on w2id criterion. Chin J Comput 44(4):724–740. https://doi.org/10.11897/SP.J.1016.2021.00724

    Google Scholar 

  17. Yan C, Kla B, Jsa B, Hfcd E, Xya B, Yq F (2020) Attribute group for attribute reduction - sciencedirect. Inf Sci 535:64–80. https://doi.org/10.1016/j.ins.2020.05.010

    Article  Google Scholar 

  18. Liu K, Yang X, Yu H, Fujita H, Liu D (2020) Supervised information granulation strategy for attribute reduction. Int J Mach Learn Cybern 11(5150). https://doi.org/10.1007/s13042-020-01107-5

  19. Yang X, Li T, Liu D, Fujita H (2020) A multilevel neighborhood sequential decision approach of three-way granular computing. Inf Sci:538. https://doi.org/10.1016/j.ins.2020.05.060

  20. Chen H, Li T, Cai Y, Luo C, Fujita H (2016) Parallel attribute reduction in dominance-based neighborhood rough set. Inf Sci 373:351–368. https://doi.org/10.1016/j.ins.2016.09.012

    Article  Google Scholar 

  21. Mohammadi F G, Abadeh M S (2014) Image steganalysis using a bee colony based feature selection algorithm. Eng Appl Artif Intell 31:35–43. https://doi.org/10.1016/j.engappai.2013.09.016

    Article  Google Scholar 

  22. Chhikara R R, Sharma P, Singh L (2016) A hybrid feature selection approach based on improved pso and filter approaches for image steganalysis. Int J Mach Learn Cybern 7(6):1195–1206. https://doi.org/10.1007/s13042-015-0448-0

    Article  Google Scholar 

  23. Lu Jc, Liu Fl, Luo Xy (2014) Selection of image features for steganalysis based on the fisher criterion. Digit Invest 11(1):57–66. https://doi.org/10.1016/j.diin.2013.12.001

    Article  Google Scholar 

  24. Ma Y, Luo X, Li X, Bao Z, Zhang Y (2018) Selection of rich model steganalysis features based on decision rough set α-positive region reduction. IEEE Trans Circ Syst Video Technol 29(2):336– 350. https://doi.org/10.1109/TCSVT.2018.2799243

    Article  Google Scholar 

  25. Yang J, Liu Y, Feng C, Zhu G (2016) Applying the fisher score to identify alzheimer’s disease-related genes. Genet Mol Res 15(2). https://doi.org/10.4238/gmr.15028798

  26. Xu J, Wang Y, Mu H, Huang F (2019) Feature genes selection based on fuzzy neighborhood conditional entropy. J Intell Fuzzy Syst 36(1):117–126. https://doi.org/10.3233/JIFS-18100

    Article  Google Scholar 

  27. Pawlak Z (1982) Rough sets. Int J Comput Inf Sci 11(5):341–356. https://doi.org/10.1007/BF01001956

    Article  Google Scholar 

  28. Hu Q, Yu D, Liu J, Wu C (2008) Neighborhood rough set based heterogeneous feature subset selection. Inf Sci 178(18):3577–3594. https://doi.org/10.1016/j.ins.2008.05.024

    Article  MathSciNet  Google Scholar 

  29. Al-Sharhan S, Karray F, Gueaieb W, Basir O (2001) Fuzzy entropy: a brief survey. In: 10th IEEE international conference on fuzzy systems. (cat. no. 01CH37297), vol 3. IEEE, pp 1135–1139. https://doi.org/10.1109/FUZZ.2001.1008855

  30. Sun L, Zhang XY, Qian YH, Xu JC, Zhang SG, Tian Y (2019) Joint neighborhood entropy-based gene selection method with fisher score for tumor classification. Appl Intell 49(4):1245–1259. https://doi.org/10.1007/s10489-018-1320-1

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yuanyuan Ma.

Ethics declarations

Conflict of Interests

The authors declare no conflict of interest.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xu, J., Yang, J., Ma, Y. et al. Feature selection method for color image steganalysis based on fuzzy neighborhood conditional entropy. Appl Intell 52, 9388–9405 (2022). https://doi.org/10.1007/s10489-021-02923-0

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10489-021-02923-0

Keywords

Navigation