Skip to main content
Log in

A human-like decision intelligence for obstacle avoidance in autonomous vehicle parking

  • Published:
Applied Intelligence Aims and scope Submit manuscript

Abstract

The autonomous vehicle parking problem has drawn increased attention in recent times. It can resolve the parking-related issues that involve minimizing human driving errors and saving fuel and time. In practice, parallel parking needs extra care when dynamicity is present in the environment. Many human drivers have the expertise to take quick action when obstacles appear on their driving path. An autonomous system should possess such intelligence that can mimic human-like behavior in the presence of obstacles. This work focuses on providing an intelligent autonomous parking design using a car-like mobile robot (CLMR) that efficiently parks the vehicle in dynamic environmental conditions. A novel fuzzy-based obstacle avoidance controller is proposed that integrates sensor information into the parking problem, obtained from the surrounding of a CLMR. Ultrasonic sensors’ arrangement and their grouping provide inputs for the fuzzy system. A fuzzy-based obstacle avoidance controller can execute intelligent parking like a human by avoiding static as well as moving obstacles. The proposed work is tested in different challenging environmental conditions. Simulation results demonstrate that the proposed algorithm accomplishes autonomous parallel parking reasonably well in the presence of static and moving obstacles and can be used to park the vehicle in real-time. The proposed work helps to solve the autonomous parking problem with safety, especially in dynamic environmental conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23
Fig. 24
Fig. 25

Similar content being viewed by others

References

  1. Lyon D (1992) Parallel parking with curvature and nonholonomic constraints. IEEE Intell Veh Symp Proc:341–346. https://doi.org/10.1109/IVS.1992.252283

  2. Murray RM, Sastry SS (1993) Nonholonomic motion planning. Steering using sinusoids. IEEE Trans Automat Contr 38:700–716. https://doi.org/10.1109/9.277235

    Article  MathSciNet  MATH  Google Scholar 

  3. Laumond JP, Jacobs PE, Taïx M, Murray RM (1994) A motion planner for nonholonomic mobile robots. IEEE Trans Robot Autom 10:577–593. https://doi.org/10.1109/70.326564

    Article  Google Scholar 

  4. Gorinevsky D, Kapitanovsky A, Goldenberg A (1996) Neural network architecture for trajectory generation and control of automated car parking. IEEE Trans Control Syst Technol 4:50–56. https://doi.org/10.1109/87.481766

    Article  Google Scholar 

  5. Li T-HS, Chang S-J (2003) Autonomous fuzzy parking control of a car-like mobile robot. IEEE Trans Syst Man Cybern Part A Syst Humans 33:451–465. https://doi.org/10.1109/TSMCA.2003.811766

    Article  Google Scholar 

  6. Baturone I, Moreno-Velo FJ, Sánchez-Solano S, Ollero A (2004) Automatic design of fuzzy controllers for car-like autonomous robots. IEEE Trans Fuzzy Syst 12:447–465. https://doi.org/10.1109/TFUZZ.2004.832532

    Article  Google Scholar 

  7. Müller B, Deutscher J, Grodde S (2007) Continuous curvature trajectory design and feedforward control for parking a car. IEEE Trans Control Syst Technol 15:541–553. https://doi.org/10.1109/TCST.2006.890289

    Article  Google Scholar 

  8. Lee C-K, Lin C-L, Shiu B-M (2009) Autonomous vehicle parking using hybrid artificial intelligent approach. J Intell Robot Syst 56:319–343. https://doi.org/10.1007/s10846-009-9319-9

    Article  MATH  Google Scholar 

  9. Vorobieva H, Glaser S, Minoiu-Enache N, Mammar S (2015) Automatic parallel parking in tiny spots: path planning and control. IEEE Trans Intell Transp Syst 16:396–410. https://doi.org/10.1109/TITS.2014.2335054

    Article  Google Scholar 

  10. Li B, Shao Z (2015) A unified motion planning method for parking an autonomous vehicle in the presence of irregularly placed obstacles. Knowledge-Based Syst 86:11–20. https://doi.org/10.1016/j.knosys.2015.04.016

    Article  Google Scholar 

  11. Li B, Zhang Y, Shao Z (2016) Spatio-temporal decomposition: a knowledge-based initialization strategy for parallel parking motion optimization. Knowledge-Based Syst 107:179–196. https://doi.org/10.1016/j.knosys.2016.06.008

    Article  Google Scholar 

  12. Ornik M, Moarref M, Broucke ME (2017) An automated parallel parking strategy using reach control theory. IFAC-PapersOnLine 50:9089–9094. https://doi.org/10.1016/j.ifacol.2017.08.1699

    Article  Google Scholar 

  13. Przybyła M, Kowalczyk W, Kozłowski K (2017) Navigation function used for parallel parking in restricted area by a differentially-driven Mobile robot. IFAC-PapersOnLine 50:4312–4317. https://doi.org/10.1016/j.ifacol.2017.08.852

    Article  Google Scholar 

  14. Liu W, Li Z, Li L, Wang FY (2017) Parking like a human: a direct trajectory planning solution. IEEE Trans Intell Transp Syst 18:3388–3397. https://doi.org/10.1109/TITS.2017.2687047

    Article  Google Scholar 

  15. Hongbo G, Guotao X, Xinyu Z, Bo C (2017) Autonomous parking control for intelligent vehicles based on a novel algorithm. J China Univ Posts Telecommun 24:51–56. https://doi.org/10.1016/S1005-8885(17)60223-1

    Article  Google Scholar 

  16. Panomruttanarug B (2017) Application of iterative learning control in tracking a Dubin’s path in parallel parking. Int J Automot Technol 18:1099–1107. https://doi.org/10.1007/s12239-017-0107-4

    Article  Google Scholar 

  17. Tazaki Y, Okuda H, Suzuki T (2017) Parking trajectory planning using multiresolution state roadmaps. IEEE Trans Intell Veh 2:298–307. https://doi.org/10.1109/TIV.2017.2769882

    Article  Google Scholar 

  18. Moon J, Bae I, Kim S (2017) Real-time near-optimal path and maneuver planning in automatic parking using a simultaneous dynamic optimization approach. IEEE Intell Veh Symp Proc:193–196. https://doi.org/10.1109/IVS.2017.7995719

  19. Upadhyay S, Ratnoo A (2018) A point-to-ray framework for generating smooth parallel parking maneuvers. IEEE Robot Autom Lett 3:1268–1275. https://doi.org/10.1109/LRA.2018.2795655

    Article  Google Scholar 

  20. Feng Z, Chen S, Chen Y, Zheng N (2018) Model-Based Decision Making with Imagination for Autonomous Parking. IEEE Intell Veh Symp Proc 2018-June:2216–2223. https://doi.org/10.1109/IVS.2018.8500700

  21. Jhang JH, Lian FL, Hao YH (2020) Human-like motion planning for autonomous parking based on revised bidirectional rapidly-exploring random tree* with Reeds-Shepp curve. Asian J Control:1–15. https://doi.org/10.1002/asjc.2439

  22. Shi J, Wu J, Zhu B et al (2018) Design of Automatic Parallel Parking System Based on Multi-Point Preview Theory. SAE Tech Pap 2018-April:1–8. https://doi.org/10.4271/2018-01-0604

  23. Chai R, Tsourdos A, Savvaris A, Chai S, Xia Y (2019) Two-stage trajectory optimization for autonomous ground vehicles parking maneuver. IEEE Trans Ind Informatics 15:3899–3909. https://doi.org/10.1109/TII.2018.2883545

    Article  Google Scholar 

  24. Chai R, Tsourdos A, Savvaris A, Chai S, Xia Y, Chen CLP (2020) Multi-objective optimal parking maneuver planning of autonomous wheeled vehicles. IEEE Trans Ind Electron PP:1–1. https://doi.org/10.1109/tie.2019.2962482

  25. Zhang J, Shi Z, Yang X, Zhao J (2020) Trajectory planning and tracking control for autonomous parallel parking of a non-holonomic vehicle. Meas Control (United Kingdom) 53:1800–1816. https://doi.org/10.1177/0020294020944961

    Article  Google Scholar 

  26. Zhou RF, Liu XF, Cai GP (2020) A new geometry-based secondary path planning for automatic parking. Int J Adv Robot Syst 17:1–17. https://doi.org/10.1177/1729881420930575

    Article  Google Scholar 

  27. González D, Pérez J, Milanés V, Nashashibi F (2016) A review of motion planning techniques for automated vehicles. IEEE Trans Intell Transp Syst 17:1135–1145. https://doi.org/10.1109/TITS.2015.2498841

    Article  Google Scholar 

  28. Paromtchik IE, Laugier C (1996) Motion generation and control for parking an autonomous vehicle. Proc IEEE Int Conf Robot Autom 4:3117–3122. https://doi.org/10.1109/robot.1996.509186

    Article  Google Scholar 

  29. Gómez-Bravo F, Cuesta F, Ollero A (2001) Parallel and diagonal parking in nonholonomic autonomous vehicles. Eng Appl Artif Intell 14:419–434. https://doi.org/10.1016/S0952-1976(01)00004-5

    Article  Google Scholar 

  30. Chang SJ, Li THS (2002) Design and implementation of fuzzy parallel-parking control for a car-type mobile robot. J Intell Robot Syst Theory Appl 34:175–194. https://doi.org/10.1023/A:1015664327686

    Article  MATH  Google Scholar 

  31. Zhao Y, Collins EG (2005) Robust automatic parallel parking in tight spaces via fuzzy logic. Rob Auton Syst 51:111–127. https://doi.org/10.1016/j.robot.2005.01.002

    Article  Google Scholar 

  32. Demirli K, Khoshnejad M (2009) Autonomous parallel parking of a car-like mobile robot by a neuro-fuzzy sensor-based controller. Fuzzy Sets Syst 160:2876–2891. https://doi.org/10.1016/j.fss.2009.01.019

    Article  MathSciNet  Google Scholar 

  33. Panomruttanarug B, Higuchi K (2010) Fuzzy logic based autonomous parallel parking system with Kalman filtering. SICE J Control Meas Syst Integr 3:266–271. https://doi.org/10.9746/jcmsi.3.266

    Article  Google Scholar 

  34. Li THS, Yeh YC, Da Wu J et al (2010) Multifunctional intelligent autonomous parking controllers for carlike mobile robots. IEEE Trans Ind Electron 57:1687–1700. https://doi.org/10.1109/TIE.2009.2033093

    Article  Google Scholar 

  35. Huang S-J, Hsu Y-S (2017) Parking space detection and trajectory tracking control for vehicle auto-parking. Int J Mech Mechatronics Eng 11:1712–1718

    Google Scholar 

  36. Song J, Zhang W, Wu X, Cao H, Gao Q, Luo S (2019) Laser-based SLAM automatic parallel parking path planning and tracking for passenger vehicle. IET Intell Transp Syst 13:1557–1568. https://doi.org/10.1049/iet-its.2019.0049

    Article  Google Scholar 

  37. Ye H, Jiang H, Ma S, Tang B, Wahab L (2019) Linear model predictive control of automatic parking path tracking with soft constraints. Int J Adv Robot Syst 16:1–13. https://doi.org/10.1177/1729881419852201

    Article  Google Scholar 

  38. Li C, Jiang H, Ma S, Jiang S, Li Y (2020) Automatic parking path planning and tracking control research for intelligent vehicles. Appl Sci 10:1–27. https://doi.org/10.3390/app10249100

    Article  Google Scholar 

  39. Johnson CM, Gray JO (1994) Hierarchical path-planning for a mobile robot. Eng Appl Artif Intell 7:137–149. https://doi.org/10.1016/0952-1976(94)90018-3

    Article  Google Scholar 

  40. Li W (1994) Fuzzy-logic-based reactive behavior control of an autonomous mobile system in unknown environments. Eng Appl Artif Intell 7:521–531. https://doi.org/10.1016/0952-1976(94)90031-0

    Article  Google Scholar 

  41. Xu WL, Tso SK (1999) Sensor-based fuzzy reactive navigation of a mobile robot through local target switching. IEEE Trans Syst Man Cybern Part C Appl Rev 29:451–459. https://doi.org/10.1109/5326.777079

    Article  Google Scholar 

  42. Antonelli G, Chiaverini S, Fusco G (2007) A fuzzy-logic-based approach for mobile robot path tracking. IEEE Trans Fuzzy Syst 15:211–221. https://doi.org/10.1109/TFUZZ.2006.879998

    Article  Google Scholar 

  43. Hwang CL, Shih CY (2009) A distributed active-vision network-space approach for the navigation of a car-like wheeled robot. IEEE Trans Ind Electron 56:846–855. https://doi.org/10.1109/TIE.2008.2004388

    Article  Google Scholar 

  44. Joshi MM, Zaveri MA (2009) Fuzzy based autonomous robot navigation system. Proc INDICON 2009 - an IEEE India Counc Conf. https://doi.org/10.1109/INDCON.2009.5409419

  45. Chou CY, Juang CF (2018) Navigation of an autonomous wheeled robot in unknown environments based on evolutionary fuzzy control Inventions 3. https://doi.org/10.3390/inventions3010003

  46. Morales N, Arnay R, Toledo J, Morell A, Acosta L (2016) Safe and reliable navigation in crowded unstructured pedestrian areas. Eng Appl Artif Intell 49:74–87. https://doi.org/10.1016/j.engappai.2015.11.008

    Article  Google Scholar 

  47. Shibata K, Shibata N, Nonaka K, Sekiguchi K (2018) Model predictive obstacle avoidance control for vehicles with automatic velocity suppression using artificial potential field. IFAC-PapersOnLine 51:313–318. https://doi.org/10.1016/j.ifacol.2018.11.050

    Article  Google Scholar 

  48. Raksincharoensak P, Rahman MAA, Hamid UZA, Saito Y, Zamzuri H (2018) A review on threat assessment, path planning and path tracking strategies for collision avoidance systems of autonomous vehicles. Int J Veh Auton Syst 14:134. https://doi.org/10.1504/ijvas.2018.10017220

    Article  Google Scholar 

  49. Chao CH, Ho CH, Lin SH, Li THS (2005) Omni-directional vision-based parallel-parking control design for car-like mobile robot. Proc 2005 IEEE Int Conf Mechatronics, ICM ‘05 2005:562–567. https://doi.org/10.1109/ICMECH.2005.1529319

  50. Krammer P, Schweinzer H (2006) Localization of object edges in arbitrary spatial positions based on ultrasonic data. IEEE Sensors J 6:203–210. https://doi.org/10.1109/JSEN.2005.860359

    Article  Google Scholar 

  51. Acar EU, Choset H, Lee JY (2006) Sensor-based coverage with extended range detectors. IEEE Trans Robot 22:189–198. https://doi.org/10.1109/TRO.2005.861455

    Article  Google Scholar 

  52. Wang WC, Chen R (2008) A vision-based fuzzy logic controller for backing-up an autonomous vehicle. J Intell Fuzzy Syst 19:273–284

    MATH  Google Scholar 

  53. Thornton DA, Redmill K, Coifman B (2014) Automated parking surveys from a LIDAR equipped vehicle. Transp Res Part C Emerg Technol 39:23–35. https://doi.org/10.1016/j.trc.2013.11.014

    Article  Google Scholar 

  54. Suhr JK, Jung HG (2016) Automatic parking space detection and tracking for underground and indoor environments. IEEE Trans Ind Electron 63:5687–5698. https://doi.org/10.1109/TIE.2016.2558480

    Article  Google Scholar 

  55. Heimberger M, Horgan J, Hughes C, McDonald J, Yogamani S (2017) Computer vision in automated parking systems: design, implementation and challenges. Image Vis Comput 68:88–101. https://doi.org/10.1016/j.imavis.2017.07.002

    Article  Google Scholar 

  56. Du X, Tan KK (2015) Autonomous reverse parking system based on robust path generation and improved sliding mode control. IEEE Trans Intell Transp Syst 16:1225–1237. https://doi.org/10.1109/TITS.2014.2354423

    Article  Google Scholar 

  57. Du X, Tan KK, Htet KKK (2015) Autonomous reverse parking system - vision approach through ridge detector and Kalman filter. Int J Mechatronics Autom 5:22–33. https://doi.org/10.1504/IJMA.2015.068450

    Article  Google Scholar 

  58. Aye YY, Watanabe K, Maeyama S, Nagai I (2016) Design of an image-based fuzzy controller for autonomous parking of four-wheeled mobile robots. Int J Appl Electromagn Mech 52:859–865. https://doi.org/10.3233/JAE-162180

    Article  Google Scholar 

  59. Zhang P, Xiong L, Yu Z, Fang P, Yan S, Yao J, Zhou Y (2019) Reinforcement learning-based end-to-end parking for automatic parking system Sensors (Switzerland) 19. https://doi.org/10.3390/s19183996

  60. Van Brummelen J, O’Brien M, Gruyer D, Najjaran H (2018) Autonomous vehicle perception: the technology of today and tomorrow. Transp Res Part C Emerg Technol 89:384–406. https://doi.org/10.1016/j.trc.2018.02.012

    Article  Google Scholar 

  61. Nakrani N, Joshi M (2016) Fuzzy based autonomous parallel parking challenges in real time scenario. In: Advances in Intelligent Systems and Computing, pp 789–802

  62. Wang W, Song Y, Zhang J, Deng H (2014) Automatic parking of vehicles: a review of literatures. Int J Automot Technol 15:967–978. https://doi.org/10.1007/s12239-014-0102-y

    Article  Google Scholar 

  63. Faheem MSA, Khan GM et al (2013) A survey of intelligent car parking system. J Appl Res Technol 11:714–726. https://doi.org/10.1016/S1665-6423(13)71580-3

    Article  Google Scholar 

  64. Amer NH, Zamzuri H, Hudha K, Kadir ZA (2017) Modelling and control strategies in path tracking control for autonomous ground vehicles: a review of state of the art and challenges. J Intell Robot Syst Theory Appl 86:225–254. https://doi.org/10.1007/s10846-016-0442-0

    Article  Google Scholar 

  65. Haidegger T, Kovács L, Precup RE, et al (2011) Cascade control for telerobotic systems serving space medicine. In: IFAC proceedings volumes (IFAC-PapersOnline), pp 3759–3764

  66. Precup RE, Tomescu ML (2015) Stable fuzzy logic control of a general class of chaotic systems. Neural Comput Appl 26:541–550. https://doi.org/10.1007/s00521-014-1644-7

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Naitik M. Nakrani.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nakrani, N.M., Joshi, M.M. A human-like decision intelligence for obstacle avoidance in autonomous vehicle parking. Appl Intell 52, 3728–3747 (2022). https://doi.org/10.1007/s10489-021-02653-3

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10489-021-02653-3

Keywords

Navigation