Skip to main content
Log in

Grey wolf optimization algorithm for facial image super-resolution

  • Published:
Applied Intelligence Aims and scope Submit manuscript

Abstract

Face image super-resolution (FSR) algorithms are capable of providing a high-resolution image from an input low-resolution (LR) image. Various FSR algorithms use a set of training examples to reconstruct the input LR image. For the purpose, proper weights need to be calculated for each training image. In general, the least square estimation approach is used for obtaining optimal reconstruction weights, known as least square representation (LSR) problem. In this paper, to minimize LSR problem more effectively, a grey wolf optimizer (GWO) based FSR algorithm (FSR-GWO) is proposed. To make search process of GWO algorithm suitable to FSR, a new formulation for upper-bound and lower-bound is introduced. Performance comparison with state-of-the-art nature-inspired algorithms and several super-resolution methods on FEI public face database shows the effectiveness of the proposed FSR-GWO algorithm.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Baker S, Kanade T (2000) Hallucinating faces. In: Proceedings Fourth IEEE international conference on automatic face and gesture recognition (Cat. No. PR00580), pp 83–88

  2. Bansal JC, Farswan P (2017) A novel disruption in biogeography-based optimization with application to optimal power flow problem. Appl Intell 46(3):590–615. https://doi.org/10.1007/s10489-016-0848-1

    Article  Google Scholar 

  3. Bohat VK, Arya K (2018) An effective gbest-guided gravitational search algorithm for real-parameter optimization and its application in training of feedforward neural networks. Knowl-Based Syst 143:192–207

    Article  Google Scholar 

  4. Bohat VK, Arya K (2018) A new heuristic for multilevel thresholding of images. Expert Systems with Applications. https://doi.org/10.1016/j.eswa.2018.08.045

  5. Bohat VK, Arya KV (2017) Artificial prey-predator (app): an efficient approach for numerical function optimization. In: 2017 Conference on information and communication technology (CICT), pp 1–6

  6. Chang H, Yeung DY, Xiong Y (2004) Super-resolution through neighbor embedding. In: Proceedings of the IEEE computer society conference on computer vision and pattern recognition (CVPR), vol 1, pp 1–8

  7. Darwin C (1859) On the origin of species by means of natural selection london. J Murray

  8. Eberhart RC, Kennedy J (1995) A new optimizer using particle swarm theory. In: Proceedings of the sixth international symposium on micro machine and human science, vol 1. New York, pp 39–43

  9. Emary E, Zawbaa HM, Hassanien AE (2016) Binary grey wolf optimization approaches for feature selection. Neurocomputing 172:371–381. https://doi.org/10.1016/j.neucom.2015.06.083

    Article  Google Scholar 

  10. Holland JH (1992) Genetic algorithms. Sci Am 267(1):66–72

    Article  Google Scholar 

  11. Jiang J, Chen C, Huang K, Cai Z, Hu R (2016) Noise robust position-patch based face super-resolution via tikhonov regularized neighbor representation. Inf Sci 367–368:354–372

    Article  Google Scholar 

  12. Jiang J, Hu R, Wang Z, Han Z (2014) Noise robust face hallucination via locality-constrained representation. IEEE Trans Multimed 16(5):1268–1281

    Article  Google Scholar 

  13. Khairuzzaman AKM, Chaudhury S (2017) Multilevel thresholding using grey wolf optimizer for image segmentation. Expert Syst Appl 86:64–76. https://doi.org/10.1016/j.eswa.2017.04.029

    Article  Google Scholar 

  14. Li K, Zhu Y, Yang J, Jiang J (2016) Video super-resolution using an adaptive superpixel-guided auto-regressive model. Pattern Recogn 51(C):59–71

    Article  Google Scholar 

  15. Li X, Orchard MT (2001) New edge-directed interpolation. IEEE Trans Image Process 10(10):1521–1527

    Article  Google Scholar 

  16. Liu L, Chen CLP, Li S, Tang YY, Chen L (2017) Robust face hallucination via locality-constrained bi-layer representation. IEEE Trans Cybern PP(99):1–13

    Google Scholar 

  17. Lu C, Xiao S, Li X, Gao L (2016) An effective multi-objective discrete grey wolf optimizer for a real-world scheduling problem in welding production. Adv Eng Softw 99:161–176. https://doi.org/10.1016/j.advengsoft.2016.06.004

    Article  Google Scholar 

  18. Ma X, Zhang J, Qi C (2010) Hallucinating face by position-patch. Pattern Recogn 43(6):2224–2236

    Article  Google Scholar 

  19. Mirjalili S (2015) How effective is the grey wolf optimizer in training multi-layer perceptrons. Appl Intell 43(1):150–161. https://doi.org/10.1007/s10489-014-0645-7

    Article  Google Scholar 

  20. Mirjalili S, Lewis A (2016) The whale optimization algorithm. Adv Eng Softw 95:51–67

    Article  Google Scholar 

  21. Mirjalili S, Mirjalili SM, Lewis A (2014) Grey wolf optimizer. Adv Eng Softw 69:46–61

    Article  Google Scholar 

  22. Muro C, Escobedo R, Spector L, Coppinger R (2011) Wolf-pack (canis lupus) hunting strategies emerge from simple rules in computational simulations. Behav Processes 88(3):192–197. https://doi.org/10.1016/j.beproc.2011.09.006

    Article  Google Scholar 

  23. Nguyen K, Fookes C, Sridharan S, Tistarelli M, Nixon M (2018) Super-resolution for biometrics: a comprehensive survey. Pattern Recogn 78:23–42

    Article  Google Scholar 

  24. Precup RE, David RC, Petriu EM (2017) Grey wolf optimizer algorithm-based tuning of fuzzy control systems with reduced parametric sensitivity. IEEE Trans Ind Electron 64(1):527–534. https://doi.org/10.1109/TIE.2016.2607698

    Article  Google Scholar 

  25. Price K, Storn RM, Lampinen JA (2006) Differential evolution: a practical approach to global optimization. Springer Science & Business Media

  26. Rajput SS, Arya K, Singh V (2018) Robust face super-resolution via iterative sparsity and locality-constrained representation. Inform Sci 463-464:227–244. https://doi.org/10.1016/j.ins.2018.06.050

    Article  Google Scholar 

  27. Rajput SS, Singh A, Arya K, Jiang J (2018) Noise robust face hallucination algorithm using local content prior based error shrunk nearest neighbors representation. Signal Process 147:233–246. https://doi.org/10.1016/j.sigpro.2018.01.030

    Article  Google Scholar 

  28. Rashedi E, Nezamabadi-Pour H, Saryazdi S (2009) Gsa: a gravitational search algorithm. Inf Sci 179(13):2232–2248

    Article  MATH  Google Scholar 

  29. dos Santos Coelho L, Lee CS (2008) Solving economic load dispatch problems in power systems using chaotic and gaussian particle swarm optimization approaches. Int J Electr Power Energy Syst 30(5):297–307. https://doi.org/10.1016/j.ijepes.2007.08.001

    Article  Google Scholar 

  30. Saraswat M, Arya K (2014) Supervised leukocyte segmentation in tissue images using multi-objective optimization technique. Eng Appl Artif Intell 31:44–52. https://doi.org/10.1016/j.engappai.2013.09.010. Special Issue: Advances in Evolutionary Optimization Based Image Processing

    Article  Google Scholar 

  31. Saraswat M, Arya K, Sharma H (2013) Leukocyte segmentation in tissue images using differential evolution algorithm. Swarm Evol Comput 11:46–54. https://doi.org/10.1016/j.swevo.2013.02.003

    Article  Google Scholar 

  32. Suresh S, Lal S (2016) An efficient cuckoo search algorithm based multilevel thresholding for segmentation of satellite images using different objective functions. Expert Syst Appl 58:184–209. https://doi.org/10.1016/j.eswa.2016.03.032

    Article  Google Scholar 

  33. Tawhid MA, Ali AF (2017) A hybrid grey wolf optimizer and genetic algorithm for minimizing potential energy function. Memetic Comput 9(4):347–359. https://doi.org/10.1007/s12293-017-0234-5

    Article  Google Scholar 

  34. Thomaz CE, Giraldi GA (2010) A new ranking method for principal components analysis and its application to face image analysis. Image Vis Comput 28(6):902–913

    Article  Google Scholar 

  35. Wang J, Yang J, Yu K, Lv F, Huang T, Gong Y (2010) Locality-constrained linear coding for image classification. In: 2010 IEEE computer society conference on computer vision and pattern recognition, pp 3360–3367

  36. Wang N, Tao D, Gao X, Li X, Li J (2014) A comprehensive survey to face hallucination. Int J Comput Vis 106(1):9–30

    Article  Google Scholar 

  37. Wang X, Tang X (2005) Hallucinating face by eigentransformation. IEEE Trans Syst Man Cybern Part C (Appl Rev) 35(3):425–434

    Article  Google Scholar 

  38. Wang Z, Bovik AC, Sheikh HR, Simoncelli EP (2004) Image quality assessment: from error visibility to structural similarity. IEEE Trans Image Process 13(4):600–612

    Article  Google Scholar 

  39. Wolpert DH, Macready WG (1997) No free lunch theorems for optimization. IEEE Trans Evol Comput 1(1):67–82

    Article  Google Scholar 

  40. Xing R, Fu J, Shao Y, You J (2014) Rigid regression for facial image interpolation with local structure prior. In: 2014 Sixth international conference on intelligent human-machine systems and cybernetics, vol 2, pp 67–70

  41. Yang XS, Deb S (2009) Cuckoo search via levy flights. In: 2009 World congress on nature biologically inspired computing (NaBIC), pp 210–214. https://doi.org/10.1109/NABIC.2009.5393690

  42. Zhang L, Wu X (2006) An edge-guided image interpolation algorithm via directional filtering and data fusion. IEEE Trans Image Process 15(8):2226–2238

    Article  Google Scholar 

  43. Zhang X, Wu X (2008) Image interpolation by adaptive 2-d autoregressive modeling and soft-decision estimation. IEEE Trans Image Process 17(6):887–896

    Article  MathSciNet  Google Scholar 

  44. Zhu Y, Li K, Jiang J (2014) Video super-resolution based on automatic key-frame selection and feature-guided variational optical flow. Signal Process Image Commun 29(8):875–886

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vijay Kumar Bohat.

Additional information

Shyam Singh Rajput and Vijay Kumar Bohat have done equal amount of work.

Appendix

Appendix

List of abbreviations are provided in Table 5.

Table 5 List of abbreviations

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rajput, S.S., Bohat, V.K. & Arya, K.V. Grey wolf optimization algorithm for facial image super-resolution. Appl Intell 49, 1324–1338 (2019). https://doi.org/10.1007/s10489-018-1340-x

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10489-018-1340-x

Keywords

Navigation