Skip to main content
Log in

Unitless Frobenius Quantales

  • Published:
Applied Categorical Structures Aims and scope Submit manuscript

Abstract

It is often stated that Frobenius quantales are necessarily unital. By taking negation as a primitive operation, we can define Frobenius quantales that may not have a unit. We develop the elementary theory of these structures and show, in particular, how to define nuclei whose quotients are Frobenius quantales. This yields a phase semantics and a representation theorem via phase quantales. Important examples of these structures arise from Raney’s notion of tight Galois connection: tight endomaps of a complete lattice always form a Girard quantale which is unital if and only if the lattice is completely distributive. We give a characterisation and an enumeration of tight endomaps of the diamond lattices \(M_n\) and exemplify the Frobenius structure on these maps. By means of phase semantics, we exhibit analogous examples built up from trace class operators on an infinite dimensional Hilbert space. Finally, we argue that units cannot be properly added to Frobenius quantales: every possible extention to a unital quantale fails to preserve negations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Data Availability

Data sharing not applicable to this article as no datasets were generated or analysed during the current study.

References

  1. Abramsky, S., Heunen, C.: H*-algebras and nonunital Frobenius algebras: first steps in infinite-dimensional categorical quantum mechanics. In: Mathematical Foundations of Information Flow. Proc. Sympos. Appl. Math., 71, 1–24. American Mathematical Society, Providence, RI (2012). https://doi.org/10.1090/psapm/071/599

  2. Andréka, H., Mikulás, S.: Lambek calculus and its relational semantics: completeness and incompleteness. J. Logic Lang. Inf. 3(1), 1–37 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  3. Barr, M.: \(\ast \)-autonomous categories. Lecture Notes in Mathematics, Springer, Berlin, Heidelberg 752, 140 (1979). https://doi.org/10.1007/BFb0064582

  4. Blount, K.: On the structure of residuated lattices. Ph.D. thesis, Vanderbilt University (1999)

  5. Buszkowski, W.: Lambek grammars based on pregroups. In: de Groote, P., Morrill, G., Retoré, C. (eds.) Logical Aspects of Computational Linguistics, 4th International Conference, LACL 2001, Le Croisic, France, June 27–29, 2001, Proceedings. Lecture Notes in Computer Science, 2099, 95–109. Springer (2001). https://doi.org/10.1007/3-540-48199-0_6

  6. Conway, J.B.: A Course in Operator Theory. Graduate Studies in Mathematics, American Mathematical Society, Providence, RI 21, 372 (2000). https://doi.org/10.1090/gsm/021

  7. Davey, B.A., Priestley, H.A.: Introduction to Lattices and Order, 2nd edn., p. 298. Cambridge University Press, New York (2002). https://doi.org/10.1017/CBO9780511809088

  8. Egger, J.M., Kruml, D.: Girard couples of quantales. Appl. Categ. Struct. 18(2), 123–133 (2010). https://doi.org/10.1007/s10485-008-9138-3

    Article  MathSciNet  MATH  Google Scholar 

  9. Eklund, P., Gutiérrez Garcia, J., Höhle, U., Kortelainen, J.: Semigroups in Complete Lattices. Dev. Math. 54, 326 (2018). https://doi.org/10.1007/978-3-319-78948-4

  10. Galatos, N., Jipsen, P., Kowalski, T., Ono, H.: Residuated lattices: an algebraic glimpse at substructural logics. Stud. Logic Found. Math. 151. (2007). https://doi.org/10.1016/S0049-237X(07)80005-X

  11. Higgs, D.A., Rowe, K.A.: Nuclearity in the category of complete semilattices. J. Pure Appl. Algebra 57(1), 67–78 (1989). https://doi.org/10.1016/0022-4049(89)90028-5

    Article  MathSciNet  MATH  Google Scholar 

  12. Kalman, J.A.: Lattices with involution. Trans. Am. Math. Soc. 87, 485–491 (1958). https://doi.org/10.2307/1993112

    Article  MathSciNet  MATH  Google Scholar 

  13. Kruml, D., Paseka, J.: Algebraic and categorical aspects of quantales. Handbook of Algebra, North-Holland 5, 323–362 (2008). https://doi.org/10.1016/S1570-7954(07)05006-1

  14. Kuznetsov, S.L.: Relational models for the Lambek calculus with intersection and unit. In: Fahrenberg, U., Gehrke, M., Santocanale, L., Winter, M. (eds.) Relational and Algebraic Methods in Computer Science—19th International Conference, RAMiCS 2021, Marseille, France, November 2–5, 2021, Proceedings. Lecture Notes in Computer Science, 13027, 258–274. Springer (2021). https://doi.org/10.1007/978-3-030-88701-8_16

  15. Ore, O.: Galois connexions. Trans. Am. Math. Soc. 55(3), 493–513 (1944)

    Article  MathSciNet  MATH  Google Scholar 

  16. Quintero, S., Ramírez, S., Rueda, C., Valencia, F.: Counting and computing join-endomorphisms in lattices. In: Fahrenberg, U., Jipsen, P., Winter, M. (eds.) Relational and Algebraic Methods in Computer Science—18th International Conference, RAMiCS 2020, Palaiseau, France, April 8–11, 2020, Proceedings [postponed]. Lecture Notes in Computer Science, Springer 12062, 253–269 (2020). https://doi.org/10.1007/978-3-030-43520-2_16

  17. Raney, G.N.: Tight Galois connections and complete distributivity. Trans. Am. Math. Soc. 97, 418–426 (1960). https://doi.org/10.2307/1993380

    Article  MathSciNet  MATH  Google Scholar 

  18. Rosenthal, K.I.: Quantales and Their Applications. Pitman Research Notes in Mathematics Series, Longman Scientific & Technical, Harlow 234, 165 (1990)

  19. Rosenthal, K.I.: A note on Girard quantales. Cahiers de Topologie et Géométrie Différentielle Catégoriques 31(1), 3–11 (1990)

    MathSciNet  MATH  Google Scholar 

  20. Rump, W.: Frobenius quantales, Serre quantales and the Riemann–Roch theorem. Studia Logica (2021). https://doi.org/10.1007/s11225-021-09970-1

    Article  MATH  Google Scholar 

  21. Santocanale, L.: Dualizing sup-preserving endomaps of a complete lattice. In: Spivak, D.I., Vicary, J. (eds.) Proceedings of the 3rd Annual International Applied Category Theory Conference 2020, ACT 2020, Cambridge, USA, 6–10th July 2020. EPTCS, 333, 335–346 (2020). https://doi.org/10.4204/EPTCS.333.23

  22. Santocanale, L.: Skew metrics valued in Sugihara semigroups. In: Fahrenberg, U., Gehrke, M., Santocanale, L., Winter, M. (eds.) Relational and Algebraic Methods in Computer Science—19th International Conference, RAMiCS 2021, Marseille, France, November 2-=5, 2021, Proceedings. Lecture Notes in Computer Science, 13027, 396–412. Springer (2021). https://doi.org/10.1007/978-3-030-88701-8_24

  23. Santocanale, L.: The involutive quantaloid of completely distributive lattices. In: Fahrenberg, U., Jipsen, P., Winter, M. (eds.) Relational and Algebraic Methods in Computer Science—18th International Conference, RAMiCS 2020, Palaiseau, France, April 8–11, 2020, Proceedings [postponed]. Lecture Notes in Computer Science, vol. 12062, pp. 286–301. Springer (2020). https://doi.org/10.1007/978-3-030-43520-2_18

  24. Santocanale, L., Gouveia, M.J.: The continuous weak order. J. Pure Appl. Algebra (2021). https://doi.org/10.1016/j.jpaa.2020.106472

    Article  MathSciNet  MATH  Google Scholar 

  25. Yetter, D.N.: Quantales and (noncommutative) linear logic. J. Symb. Logic 55(1), 41–64 (1990). https://doi.org/10.2307/2274953

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

The authors are thankful to Nick Galatos, the anonymous referee, and the editor for precious pointers, remarks, and guidance for improving a first version of this paper.

Funding

This work was supported by the Agence Nationale de la Recherche, Project LAMBDACOMB ANR-21-CE48-0017.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Luigi Santocanale.

Ethics declarations

Competing interest

The authors declare they have no competing interests.

Additional information

Communicated by Jiří Rosický.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

de Lacroix, C., Santocanale, L. Unitless Frobenius Quantales. Appl Categor Struct 31, 5 (2023). https://doi.org/10.1007/s10485-022-09699-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10485-022-09699-5

Keywords

Mathematics Subject Classification

Navigation