Skip to main content
Log in

Integrated multi-scale approach combining global homogenization and local refinement for multi-field analysis of high-temperature superconducting composite magnets

  • Published:
Applied Mathematics and Mechanics Aims and scope Submit manuscript

Abstract

Second-generation high-temperature superconducting (HTS) conductors, specifically rare earth-barium-copper-oxide (REBCO) coated conductor (CC) tapes, are promising candidates for high-energy and high-field superconducting applications. With respect to epoxy-impregnated REBCO composite magnets that comprise multilayer components, the thermomechanical characteristics of each component differ considerably under extremely low temperatures and strong electromagnetic fields. Traditional numerical models include homogenized orthotropic models, which simplify overall field calculation but miss detailed multi-physics aspects, and full refinement (FR) ones that are thorough but computationally demanding. Herein, we propose an extended multi-scale approach for analyzing the multi-field characteristics of an epoxy-impregnated composite magnet assembled by HTS pancake coils. This approach combines a global homogenization (GH) scheme based on the homogenized electromagnetic T-A model, a method for solving Maxwell’s equations for superconducting materials based on the current vector potential T and the magnetic field vector potential A, and a homogenized orthotropic thermoelastic model to assess the electromagnetic and thermoelastic properties at the macroscopic scale. We then identify “dangerous regions” at the macroscopic scale and obtain finer details using a local refinement (LR) scheme to capture the responses of each component material in the HTS composite tapes at the mesoscopic scale. The results of the present GH-LR multi-scale approach agree well with those of the FR scheme and the experimental data in the literature, indicating that the present approach is accurate and efficient. The proposed GH-LR multi-scale approach can serve as a valuable tool for evaluating the risk of failure in large-scale HTS composite magnets.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. YAO, C. and MA, Y. Superconducting materials: challenges and opportunities for large-scale applications. iScience, 24(6), 102541 (2021)

    Article  Google Scholar 

  2. ZHOU, Y. H., PARK, D., and IWASA, Y. Review of progress and challenges of key mechanical issues in high-field superconducting magnets. National Science Review, 10, nwad001 (2023)

    Article  Google Scholar 

  3. ABRAHAMSEN, A. B., MAGNUSSON, N., JENSEN, B. B., and RUNDE, M. Large superconducting wind turbine generators. Energy Procedia, 24, 60–67 (2012)

    Article  Google Scholar 

  4. ADETOKUN, B. B., OGHORADA, O., and AKAR, S. J. Superconducting magnetic energy storage systems: prospects and challenges for renewable energy applications. Journal of Energy Storage, 55, 105663 (2022)

    Article  Google Scholar 

  5. BRUZZONE, P., FIETZ, W. H., MINERVINI, J. V., NOVIKOV, M., YANAGI, N., ZHAI, Y., and ZHENG, J. High temperature superconductors for fusion magnets. Nuclear Fusion, 58, 103001 (2018)

    Article  Google Scholar 

  6. SOTELO, G. G., DOS SANTOS, G., SASS, F., FRANCA, W. B., DIAS, D. H. N., FORTES, Z. M., POLASEK, A., and DE ANDRADE, R., JR. A review of superconducting fault current limiters compared with other proven technologies. Superconductivity, 3, 100018 (2022)

    Article  Google Scholar 

  7. LIU, J., WANG, Q., QIN, L., ZHOU, B., WAMH, K., WANG, Y., WANG, L., ZHANG, L., DAI, Y., and LIU, H. World record 32.35 tesla direct-current magnetic field generated with an all-superconducting magnet. Superconductor Science and Technology, 33, 03LT01 (2020)

    Article  Google Scholar 

  8. SONG, J. B., CHOI, Y. H., YANG, D. G., KIM, Y. G., KIM, K. L., and LEE, H. G. Review of core technologies for development of 2G HTS NMR/MRI magnet: a status report of progress in Korea University. Results in Physics, 7, 3264–3276 (2017)

    Article  Google Scholar 

  9. WEIJERS, H. W., MARKIEWICZ, W. D., GAVRILIN, A. V., VORAN, A. J., VIOUCHKOV, Y. L., GUNDLACH, S. R., NOYES, D. P., ABRAIMOV, D. V., BAI, H., HANNAHS, S. T., and MURPHY, T. P. Progress in the development and construction of a 32-T superconducting magnet. IEEE Transactions on Applied Superconductivity, 26, 4300807 (2016)

    Article  Google Scholar 

  10. AWAJI, S., WATANABE, K., OGURO, H., MIYAZAKI, H., HANAI, S., TOSAKA, T., and LOKA, S. First performance test of a 25 T cryogen-free superconducting magnet. Superconductor Science and Technology, 30, 065001 (2017)

    Article  Google Scholar 

  11. TROCIEWITZ, U. P., DALBAN-CANASSY, M., HANNION, M., HILTON, D. K., JAROSZYN-SKI, J., NOYES, P., VIOUCHKOV, Y., WEIJIERS, H. W., and LARBALESTIER, D. V. 35.4T field generated using a layer-wound superconducting coil made of (RE)Ba2Cu3O7-x (RE=rare earth) coated conductor. Applied Physics Letters, 99, 202506 (2011)

    Article  Google Scholar 

  12. HAHN, S., KIM, K., KIM, K., HU, H., PAINTER, T., DIXON, L., KIM, S., BHATTARAU, K. B., NOGUCHI, S., JAROSZYNSKI, J., and LARBALESTIER, D. C. 45.5-tesla direct-current magnetic field generated with a high-temperature superconducting magnet. nature, 570, 496–499 (2019)

    Article  Google Scholar 

  13. OSAMURA, K., SUGANO, M., MACHIYA, S., ADACHI, H., OCHIAI, S., and SATO, M. Internal residual strain and critical current maximum of a surrounded Cu stabilized YBCO coated conductor. Superconductor Science and Technology, 22, 065001 (2009)

    Article  Google Scholar 

  14. SHIN, H. S. and DEDICATORIA, M. Review of progress in electromechanical properties of REBCO coated conductors for electric device applications. Progress in Superconductivity and Cryogenics, 16, 7–16 (2014)

    Article  Google Scholar 

  15. ILIN, K., YAGOTINTSEV, K. A., ZHOU, C., GAO, P., KOSSE, J., OTTEN, S. J., WESSEL, W. A. J., HAUGAN, T. J., LAAN, D. C., and NIJHUIS, A. Experiments and FE modeling of stress-strain state in ReBCO tape under tensile, torsional and transverse load. Superconductor Science and Technology, 28, 055006 (2015)

    Article  Google Scholar 

  16. TANG, S., PENG, X., and YONG, H. Numerical simulation of the mechanical behavior of superconducting tape in conductor on round core cable using the cohesive zone model. Applied Mathematics and Mechanics (English Edition), 44(9), 1511–1532 (2023) https://doi.org/10.1007/s10483-023-3025-7

    Article  Google Scholar 

  17. HARTNETT, W. N., RAMIREZ, J., OLSON, T. E. R., HUPP, C. T., JEWELL, M. C., KNOLL, A. R., HAZELTON, D. W., and ZHANG, Y. Characterization of edge damage induced on REBCO superconducting tape by mechanical slitting. Engineering Research Express, 3, 035007 (2021)

    Article  Google Scholar 

  18. ZHOU, Y. H., LIU, C., SHEN, L., and ZHANG, X. Probing of the internal damage morphology in multilayered high-temperature superconducting wires. Nature Communications, 12, 3110 (2021)

    Article  Google Scholar 

  19. GAO, P., MAO, J., CHEN, J., WANG, X., and ZHOU, Y. Electromechanical degradation of REBCO coated conductor tapes under combined tension and torsion loading. International Journal of Mechanical Sciences, 223, 107314 (2022)

    Article  Google Scholar 

  20. ZHANG, X., SUO, H., ZHANG, Z., STUART, C. W., MA, L., LIU, M., JI, Y., WANG, X., LI, M., and WANG, Q. Synergetic evolution of the microscopic crystal orientation and macroscopic superconducting properties of REBCO tape under sever deformation. Acta Materialia, 244, 118586 (2023)

    Article  Google Scholar 

  21. TAKAHASHI, S., SUETOMI, Y., TAKAO, T., YANAGISAWA, Y., MAEDA, H., TAKEDA, T., and SHIMOYAMA, J. Hoop stress modification, stress hysteresis and degradation of a REBCO coil due to the screening current under external magnetic field cycling. IEEE Transactions on Applied Superconductivity, 30, 4602607 (2020)

    Article  Google Scholar 

  22. WU, J., LIU, D., ZHANG, X., and YONG, H. Mechanical response of conductor on round core (CORC) cables under electromagnetic force. Acta Mechanica Solida Sinica, 36, 418–427 (2023)

    Article  Google Scholar 

  23. YANG, Z., SONG, P., GUAN, M., FENG, F., and QU, T. Critical current degradation and delamination crack observation of epoxy-coated REBCO superconducting tapes after thermal cycles in liquid nitrogen. Ceramics International, 47, 29824–29831 (2021)

    Article  Google Scholar 

  24. DIAZ, M. A. and SHIN, H. S. Characterization of electromechanical delamination behaviors in practical REBCO coated conductor tapes under transverse tension at 77 K. IEEE Transactions on Applied Superconductivity, 33, 6601105 (2023)

    Article  Google Scholar 

  25. GAO, P., GENG, X., ZHANG, H., MAN, G., and WANG, X. Measurement of transverse tensile interfacial strength of REBCO-coated conductors. Acta Mechanica Solida Sinica, 35, 40–50 (2022)

    Article  Google Scholar 

  26. TAKEMATSU, T., HU, R., TAKAO, T., YANAGISAWA, Y., NAKAGOME, H., UGLIETTI, D., KIYOSHI, T., TAKAHASHI, M., and MAEDA, H. Degradation of the performance of a YBCO-coated conductor double pancake coil due to epoxy impregnation. Physica C: Superconductivity and Its Applications, 470, 674–677 (2010)

    Article  Google Scholar 

  27. MATSUDA, T., OKAMURA, T., HAMADA, M., MATSUMOTO, S., UENO, T., PIAO, R., YANAGISAWA, Y., and MAEDA, H. Degradation of the performance of an epoxy-impregnated REBCO solenoid due to electromagnetic forces. Cryogenics, 90, 47–51 (2018)

    Article  Google Scholar 

  28. NIU, M., XIA, J., and YONG, H. Numerical analysis of the electromechanical behavior of high-field REBCO coils in all-superconducting magnets. Superconductor Science and Technology, 34, 115005 (2021)

    Article  Google Scholar 

  29. ZHOU, W. and ZHOU, Y. Electric-magnetic-force characteristics of rare earth barium copper oxide superconductor high-field coils based on screening effect and strain sensitivity. Applied Mathematics and Mechanics (English Edition), 43(8), 1249–1268 (2022) https://doi.org/10.1007/s10483-022-2884-6

    Article  MathSciNet  Google Scholar 

  30. KAJITA, K., IGUCHI, S., XU, Y., NAWA, M., HAMADA, M., TAKAO, T., NAKAGOME, H., MATSUMOTO, S., NISHIJIMA, G., SUEMATSU, H., TAKAHASHI, M., and YANAGISAWA, Y. Degradation of a REBCO coil due to cleavage and peeling originating from an electromagnetic force. IEEE Transactions on Applied Superconductivity, 26, 4301106 (2016)

    Article  Google Scholar 

  31. ALLEN, N. C., CHIESA, L., and TAKAYASU, M. Structural modeling of HTS tapes and cables. Cryogenics, 80, 405–418 (2016)

    Article  Google Scholar 

  32. GAO, P., GUAN, M., WANG, X., and ZHOU, Y. Electromagnetic-thermal-structure multi-layer nonlinear elastoplastic modelling study on epoxy-impregnated REBCO pancake coils in high-field magnets. Superconductivity, 1, 100002 (2022)

    Article  Google Scholar 

  33. LIU, D., WEI, W., TANG, Y., YONG, H., and ZHOU, Y. Delamination behaviors of an epoxy-impregnated REBCO pancake coil during a quench. Engineering Fracture Mechanics, 281, 109074 (2023)

    Article  Google Scholar 

  34. KANG, X., TONG, Y., WU, W., and WANG, X. Transient multi-physics behavior of an insert high temperature superconducting no-insulation coil in hybrid superconducting magnets with inductive coupling. Applied Mathematics and Mechanics (English Edition), 44(2), 255–272 (2023) https://doi.org/10.1007/s10483-023-2960-6

    Article  MathSciNet  Google Scholar 

  35. GAO, P., ZHANG, H., and WANG, X. Numerical investigation on delamination induced by thermal mismatch in epoxy impregnated REBCO pancake coils. IEEE Transactions on Applied Superconductivity, 30(4), 4603005 (2020)

    Article  Google Scholar 

  36. GAO, P., WEI, X., WU, B., XIN, C., LIAO, T., WU, W., and GUAN, M. Numerical investigation on decreasing radial stress in epoxy impregnated REBCO pancake coils by overband. Cryogenics, 103, 102971 (2019)

    Article  Google Scholar 

  37. LIU, D., LI, D., ZHANG, W., YONG, H., and ZHOU, Y. Electromagnetic-thermal-mechanical characteristics with active feedback control in a high-temperature superconducting no-insulation magnet. Science China-Physics, Mechanics & Astronomy, 65, 294612 (2022)

    Article  Google Scholar 

  38. WANG, Y. and JING, Z. Multiscale modelling and numerical homogenization of the coupled multi-physical behaviors of high-field high temperature superconducting magnets. Composite Structures, 313, 116863 (2023)

    Article  Google Scholar 

  39. KOKKINOS, C., APOSTOLIDIS, I., CARMICHAEL, J., GORTSAS, T., KOKKINOS, S., LOUKAS, K., NOVITSKI, L., POLYZOS, D., RODAPOULOS, D., SCHOERLING, D., TOM-MASINI, D., and ZLOBIN, A. V. FEA model and mechanical analysis of the Nb3Sn 15-T dipole demonstrator. IEEE Transactions on Applied Superconductivity, 28, 4007406 (2018)

    Article  Google Scholar 

  40. SARASOLA, X., BRUZZONE, P., BOTTURA, L., FERRACIN, P., ARAUJO, D. M., RIJI, G., CAU, F., PORTONE, A., TESTONI, P., PRESTEMON, S., SABBI, G., and MINERVINI, J. Magnetic and mechanical design of a 15-T large aperture dipole magnet for cable testing. IEEE Transactions on Applied Superconductivity, 29, 4001405 (2019)

    Article  Google Scholar 

  41. BERROSPE-JUAREZ, E., TRILLAUD, F., ZERMEÑO, V. M. R., and GRILLI, F. Advanced electromagnetic modeling of large-scale high-temperature superconductor systems based on H and T-A formulations. Superconductor Science and Technology, 34, 044002 (2021)

    Article  Google Scholar 

  42. RHYNER, J. Magnetic properties and AC-losses of superconductors with power law current-voltage characteristics. Physica C: Superconductivity, 212, 292–300 (1993)

    Article  Google Scholar 

  43. HILTON, D. K., GAVRILIN, A. V., and TROCIEWITZ, U. P. Practical fit functions for transport critical current versus field magnitude and angle data from (RE)BCO coated conductors at fixed low temperatures and in high magnetic fields. Superconductor Science and Technology, 28, 074002 (2015)

    Article  Google Scholar 

  44. SHEN, X., ZHANG, S., LIU, X., GONG, L., and DONG, S. Prediction of the thermo-mechanical properties of the SiCf/SiC RVE model via FEM and asymptotic homogenization method: process and implementation details. Archives of Computational Methods in Engineering, 28, 3067–3085 (2021)

    Article  Google Scholar 

  45. CHARALAMBAKIS, N. Homogenization techniques and micromechanics: a survey and perspectives. ASME Applied Mechanics Reviews, 63, 030803 (2010)

    Article  Google Scholar 

  46. WANG, X., TSUJI, Y., ISHIYAMA, A., YAMAKAWA, H., WATANABE, T., and NAGAYA, S. Experiment and numerical analysis on the YOROI structure for high-strength REBCO coil. IEEE Transactions on Applied Superconductivity, 26, 4600804 (2016)

    Google Scholar 

  47. HU, Y., HE, Z., and XUAN, H. Impact resistance study of three-dimensional orthogonal carbon fibers/BMI resin woven composites. Materials, 13, 4376 (2020)

    Article  Google Scholar 

  48. LIU, J. T., CAI, H. N., WANG, F. C., and FAN, Q. B. Multiscale numerical simulation of the shaped charge jet generated from tungsten-copper powder liner. Journal of Physics: Conference Series, 419, 012045 (2013)

    Google Scholar 

  49. IWASA, Y. and HAHN, S. First-cut design of an all-superconducting 100-T direct current magnet. Applied Physics Letters, 103, 253507 (2013)

    Article  Google Scholar 

  50. GAO, P., GENG, X., MAN, G., and WANG, X. Measurement of shear delamination strength of REBCO coated conductors. IEEE Transactions on Applied Superconductivity, 32, 6600305 (2021)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xingzhe Wang.

Ethics declarations

Conflict of interest The authors declare no conflict of interest.

Additional information

Project supported by the National Natural Science Foundation of China (Nos. 11932008 and 12272156), the Fundamental Research Funds for the Central Universities (No. lzujbky-2022-kb06), and the Gansu Science and Technology Program and Lanzhou City’s Scientific Research Funding Subsidy to Lanzhou University of China

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Guo, H., Gao, P. & Wang, X. Integrated multi-scale approach combining global homogenization and local refinement for multi-field analysis of high-temperature superconducting composite magnets. Appl. Math. Mech.-Engl. Ed. 45, 747–762 (2024). https://doi.org/10.1007/s10483-024-3112-8

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10483-024-3112-8

Key words

Chinese Library Classification

2010 Mathematics Subject Classification

Navigation