Skip to main content
Log in

Theoretical and experimental investigation of the resonance responses and chaotic dynamics of a bistable laminated composite shell in the dynamic snap-through mode

  • Published:
Applied Mathematics and Mechanics Aims and scope Submit manuscript

Abstract

The dynamic model of a bistable laminated composite shell simply supported by four corners is further developed to investigate the resonance responses and chaotic behaviors. The existence of the 1:1 resonance relationship between two order vibration modes of the system is verified. The resonance response of this class of bistable structures in the dynamic snap-through mode is investigated, and the four-dimensional (4D) nonlinear modulation equations are derived based on the 1:1 internal resonance relationship by means of the multiple scales method. The Hopf bifurcation and instability interval of the amplitude frequency and force amplitude curves are analyzed. The discussion focuses on investigating the effects of key parameters, e.g., excitation amplitude, damping coefficient, and detuning parameters, on the resonance responses. The numerical simulations show that the foundation excitation and the degree of coupling between the vibration modes exert a substantial effect on the chaotic dynamics of the system. Furthermore, the significant motions under particular excitation conditions are visualized by bifurcation diagrams, time histories, phase portraits, three-dimensional (3D) phase portraits, and Poincare maps. Finally, the vibration experiment is carried out to study the amplitude frequency responses and bifurcation characteristics for the bistable laminated composite shell, yielding results that are qualitatively consistent with the theoretical results.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. HYER, M. W. Some observations on the cured shape of thin unsymmetric laminates. Journal of Composite Materials, 15(2), 175–194 (1981)

    Article  Google Scholar 

  2. HYER, M. W. The room-temperature shapes of four-layer unsymmetric cross-ply laminates. Journal of Composite Materials, 16(4), 318–340 (1982)

    Article  Google Scholar 

  3. JUN, W. J. and HONG, C. S. Effect of residual shear strain on the cured shape of unsymmetric cross-ply thin laminates. Composites Science & Technology, 38(1), 55–67 (1990)

    Article  Google Scholar 

  4. BRAMPTON, C. J., BETTS, D. N., BOWEN, C. R., and KIM, H. A. Sensitivity of bistable laminates to uncertainties in material properties, geometry and environmental conditions. Composite Structures, 102, 276–286 (2013)

    Article  Google Scholar 

  5. DANO, M. L. and HYER, M. W. Snap-through of unsymmetric fiber-reinforced composite laminates. International Journal of Solids and Structures, 39(1), 175–198 (2002)

    Article  Google Scholar 

  6. CANTERA, M., ROMERA, J., ADARRAGA, I., and MUJIKA, F. Modelling and testing of the snap-through process of bistable cross-ply composites. Composite Structures, 120, 41–52 (2015)

    Article  Google Scholar 

  7. DIACONU, C. G., WEAVER, P. M., and ARRIETA, A. F. Dynamic analysis of bi-stable composite plates. Journal of Sound and Vibration, 322(4–5), 987–1004 (2009)

    Article  Google Scholar 

  8. DAYNES, S., WEAVER, P., and POTTER, K. Aeroelastic study of bistable composite airfoils. Journal of Aircraft, 46(6), 2169–2174 (2009)

    Article  Google Scholar 

  9. GATTO, A., MATTIONI, F., and FRISWELL, M. Experimental investigation of bistable winglets to enhance aircraft wing lift takeoff capability. Journal of Aircraft, 46(2), 647–655 (2009)

    Article  Google Scholar 

  10. BETTS, D. N., KIM, H. A., BOWEN, C. R., and INMAN, D. Optimal configurations of bistable piezo-composites for energy harvesting. Applied Physics Letters, 100(11), 114104 (2012)

    Article  Google Scholar 

  11. PAN, D., MA, B., and DAI, F. Experimental investigation of broadband energy harvesting of a bi-stable composite piezoelectric plate. Smart Materials and Structures, 26(3), 035045 (2017)

    Article  Google Scholar 

  12. HUANG, J., ZHANG, Q., SCARPA, F., LIU, Y., and LENG, J. Shape memory polymer-based hybrid honeycomb structures with zero Poisson’s ratio and variable stiffness. Composite Structures, 179, 437–443 (2017)

    Article  Google Scholar 

  13. SHAN, S., KANG, S. H., RANEY, J. R., WANG, P., FANG, L., CANDIDO, F., LEWIS, J. A., and BERTOLDI, K. Multistable architected materials for trapping elastic strain energy. Advanced Materials, 27(29), 4296–4301 (2015)

    Article  Google Scholar 

  14. SUN, J., TIGHE, B., and ZHAO, J. Tuning the energy landscape of soft robots for fast and strong motion. 2020 IEEE International Conference on Robotics and Automation (ICRA), 10082–10088 (2020)

  15. ZHANG, Z., NI, X., WU, H., SUN, M., BAO, G., WU, H., and JIANG, S. Pneumatically actuated soft gripper with bistable structures. Soft Robotics, 9(1), 57–71 (2021)

    Article  Google Scholar 

  16. ZHANG, Z., CHEN, D., WU, H., BAO, Y., and CHAI, G. Non-contact magnetic driving bioinspired venus flytrap robot based on bistable anti-symmetric CFRP structure. Composite Structure, 135, 17–22 (2016)

    Article  Google Scholar 

  17. WANG, D. A., CHEN, J. H., and PHAM, H. T. A constant-force bistable micromechanism. Sensors & Actuators A-Physical, 189, 481–487 (2013)

    Article  Google Scholar 

  18. PUTHANVEETIL, S., LIU, W. C., RILEY, K. S., ARRIETA, A. F., and LE FERRAND, H. Programmable multistability for 3D printed reinforced multifunctional composites with reversible shape change. Composites Science and Technology, 217, 109097 (2022)

    Article  Google Scholar 

  19. ARRIETA, A. F., NEILD, S. A., and WAGG, D. J. Nonlinear dynamic response and modeling of a bistable composite plate for applications to adaptive structures. Nonlinear Dynamics, 58, 259–272 (2009)

    Article  Google Scholar 

  20. ARRIETA, A. F., NEILD, S. A., and WAGG, D. J. On the cross-well dynamics of a bi-stable composite plate. Journal of Sound and Vibration, 330(14), 3424–3441 (2011)

    Article  Google Scholar 

  21. ARRIETA, A. F., SPELSBERG-KORSPETER, G., HAGEDORN, P., NEILD, S. A., and WAGG, D. J. Low order model for the dynamics of bi-stable composite plates. Journal of Intelligent Material Systems and Structures, 22(17), 2025–2043 (2011)

    Article  Google Scholar 

  22. LI, H., DAI, F., and DU, S. Broadband energy harvesting by exploiting nonlinear oscillations around the second vibration mode of a rectangular piezoelectric bistable laminate. Smart Materials and Structures, 24(4), 045024 (2015)

    Article  Google Scholar 

  23. PAN, D., JIANG, W., and DAI, F. Dynamic analysis of bi-stable hybrid symmetric laminate. Composite Structures, 225, 111158 (2019)

    Article  Google Scholar 

  24. WU, Z., LI, H., and FRISWELL, M. I. Advanced nonlinear dynamic modelling of bi-stable composite plates. Composite Structures, 201, 582–596 (2018)

    Article  Google Scholar 

  25. EMAM, S. A., HOBECK, J., and INMAN, D. J. Experimental investigation into the nonlinear dynamics of a bistable laminate. Nonlinear dynamics, 95, 3019–3039 (2019)

    Article  Google Scholar 

  26. MITURA, A., BRUNETTI, M., KLODA, L., ROMEO, F., and WARMINSKI, J. Experimental nonlinear dynamic regimes for energy harvesting from cantilever bistable shells. Mechanical Systems and Signal Processing, 206, 110890 (2024)

    Article  Google Scholar 

  27. ZHANG, W., LIU, Y., and WU, M. Theory and experiment of nonlinear vibrations and dynamic snap-through phenomena for bi-stable asymmetric laminated composite square panels under foundation excitation. Composite Structure, 225, 111140 (2019)

    Article  Google Scholar 

  28. WU, M. Q., ZHANG, W., and NIU, Y. Experimental and numerical studies on nonlinear vibrations and dynamic snap-through phenomena of bistable asymmetric composite laminated shallow shell under center foundation excitation. European Journal of Mechanics A-Solids, 89, 104303 (2021)

    Article  MathSciNet  Google Scholar 

  29. WU, M., ZHANG, W., and CHRONOPOULOS, D. Nonlinear vibrations and dynamic snap-through behaviors of four-corner simply supported bi-stable asymmetric laminated composite square shell. Mechanical Systems and Signal Processing, 173, 109023 (2022)

    Article  Google Scholar 

  30. BRUNETTI, M., MITURA, A., ROMEO, F., and WARMINSKI, J. Nonlinear dynamics of bistable composite cantilever shells: an experimental and modelling study. Journal of Sound and Vibration, 526, 116779 (2022)

    Article  Google Scholar 

  31. NAYFEH, A. H. and MOOK, D. T. Nonlinear Oscillations, Oxford University Press, Oxford (1981)

    Google Scholar 

  32. ABE, A., KOBAYASHI, Y., and YAMADA, G. Two-mode response of simply supported, rectangular laminated plates. International Journal of Non-Linear Mechanics, 33(4), 675–690 (1998)

    Article  Google Scholar 

  33. PELLICANO, F. and AVRAMOV, K. Linear and nonlinear dynamics of a circular cylindrical shell connected to a rigid disk. Communications in Nonlinear Science and Numerical Simulation, 12(4), 496–518 (2007)

    Article  Google Scholar 

  34. LIU, Y. and CHU, F. Nonlinear vibrations of rotating thin circular cylindrical shell. Nonlinear Dynamics, 67, 1467–1479 (2011)

    Article  MathSciNet  Google Scholar 

  35. CHEN, J., ZHANG, W., GUO, X., and SUN, M. Theoretical and experimental studies on nonlinear oscillations of symmetric cross-ply composite laminated plates. Nonlinear Dynamics, 73, 1697–1714 (2013)

    Article  MathSciNet  Google Scholar 

  36. TENG, M. W. and WANG, Y. Q. Nonlinear forced vibration of simply supported functionally graded porous nanocomposite thin plates reinforced with graphene platelets. Thin-Walled Structures, 164, 107799 (2021)

    Article  Google Scholar 

  37. AMABILI, M. Internal resonances in non-linear vibrations of a laminated circular cylindrical shell. Nonlinear Dynamics, 69, 755–770 (2012)

    Article  MathSciNet  Google Scholar 

  38. NIU, Y., WU, M., YAO, M., and WU, Q. Dynamic instability and internal resonance of rotating pretwisted composite airfoil blades. Chaos Solitons & Fractals, 165, 112835 (2022)

    Article  MathSciNet  Google Scholar 

  39. NIU, Y., YAO, M., and WU, Q. Nonlinear vibrations of functionally graded graphene reinforced composite cylindrical panels. Applied Mathematical Modelling, 101, 1–18 (2022)

    Article  MathSciNet  Google Scholar 

  40. ZHANG, W., MA, W., ZHANG, Y., and LIU, Y. Double excitation multi-stability and multi-pulse chaotic vibrations of a bistable asymmetric laminated composite square panels under foundation force. Chaos, 30(8), 083105 (2020)

    Article  MathSciNet  Google Scholar 

  41. DING, H., JI, J., and CHEN, L. Q. Nonlinear vibration isolation for fluid-conveying pipes using quasi-zero stiffness characteristics. Mechanical Systems and Signal Processing, 121, 675–688 (2019)

    Article  Google Scholar 

  42. DING, H. and CHEN, L. Q. Nonlinear vibration of a slightly curved beam with quasi-zero-stiffness isolators. Nonlinear Dynamics, 95(3), 2367–2382 (2019)

    Article  Google Scholar 

  43. YAO, M., LIU, P., MA, L., WANG, H., and ZHANG, W. Experimental study on broadband bistable energy harvester with L-shaped piezoelectric cantilever beam. Acta Mechanica Sinica, 36, 557–577 (2020)

    Article  Google Scholar 

  44. YAO, M., WANG, X., WU, Q., NIU, Y., and WANG, S. Dynamic analysis and design of power management circuit of the nonlinear electromagnetic energy harvesting device for the automobile suspension. Mechanical Systems and Signal Processing, 170, 108831 (2022)

    Article  Google Scholar 

  45. AWREJCEWICZ, J., SYPNIEWSKA-KAMIŃSKA, G., and MAZUR, O. Analysing regular nonlinear vibrations of nano/micro plates based on the nonlocal theory and combination of reduced order modelling and multiple scale method. Mechanical Systems and Signal Processing, 163, 108132 (2022)

    Article  Google Scholar 

  46. QATU, M. S. Vibration of Laminated Shells and Plates, Elsevier, Amsterdam (2004)

    Google Scholar 

  47. PARKER, T. S. and CHUA, L. Practical Numerical Algorithms for Chaotic Systems, SpringerVerlag, New York (2012)

    Google Scholar 

  48. WANG, Y. Q., WAN, Y. H., and ZHANG, Y. F. Vibrations of longitudinally traveling functionally graded material plates with porosities. European Journal of Mechanics A-Solids, 66, 55–68 (2017)

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

Credit authorship contribution statement Meiqi WU: methodology, software, formal analysis, investigation, and writing-original draft. Pengyu LYU: formal analysis. Hongyuan LI: validation. Jiale Yan: software. Huiling DUAN: conceptualization, methodology, resources, supervision, and writing review editing. Wei Zhang: conceptualization, validation, and investigation.

Corresponding author

Correspondence to Huiling Duan.

Ethics declarations

Conflict of interest Huiling DUAN is an editorial board member for Applied Mathematics and Mechanics (English Edition) and was not involved in the editorial review or the decision to publish this article. The authors declare no conflict of interest.

Additional information

Project supported by the National Natural Science Foundation of China (Nos. 12293000, 12293001, 11988102, 12172006, and 12202011)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wu, M., Lv, P., Li, H. et al. Theoretical and experimental investigation of the resonance responses and chaotic dynamics of a bistable laminated composite shell in the dynamic snap-through mode. Appl. Math. Mech.-Engl. Ed. 45, 581–602 (2024). https://doi.org/10.1007/s10483-024-3105-6

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10483-024-3105-6

Key words

Chinese Library Classification

2010 Mathematics Subject Classification

Navigation