Skip to main content
Log in

The viscous strip approach to simplify the calculation of the surface acoustic wave generated streaming

  • Published:
Applied Mathematics and Mechanics Aims and scope Submit manuscript

Abstract

In recent decades, the importance of surface acoustic waves, as a biocompatible tool to integrate with microfluidics, has been proven in various medical and biological applications. The numerical modeling of acoustic streaming caused by surface acoustic waves in microchannels requires the effect of viscosity to be considered in the equations which complicates the solution. In this paper, it is shown that the major contribution of viscosity and the horizontal component of actuation is concentrated in a narrow region alongside the actuation boundary. Since the inviscid equations are considerably easier to solve, a division into the viscous and inviscid domains would alleviate the computational load significantly. The particles’ traces calculated by this approximation are excellently alongside their counterparts from the completely viscous model. It is also shown that the optimum thickness for the viscous strip is about 9-fold the acoustic boundary layer thickness for various flow patterns and amplitudes of actuation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. WU, M., CHEN, C., WANG, Z., BACHMAN, H., OUYANG, Y., HUANG, P. H., SADOVSKY, Y., and HUANG, T. J. Separating extracellular vesicles and lipoproteins via acoustofluidics. Lab on a Chip, 19(7), 1174–1182 (2019)

    Article  Google Scholar 

  2. WU, M., OZCELIK, A., RUFO, J., WANG, Z., FANG, R., and HUANG, T. J. Acoustofluidic separation of cells and particles. Microsystems and Nanoengineering, 5(1), 31231539 (2019)

    Article  Google Scholar 

  3. WU, Y., STEWART, A. G., and LEE, P. V. S. On-chip cell mechanophenotyping using phase modulated surface acoustic wave. Biomicrofluidics, 13(2), 024107 (2019)

    Article  Google Scholar 

  4. DEVENDRAN, C., CARTHEW, J., FRITH, J. E., and NEILD, A. Cell adhesion, morphology, and metabolism variation via acoustic exposure within microfluidic cell handling systems. Advanced Science, 6(24), 1902326 (2019)

    Article  Google Scholar 

  5. DAS, P. K., SNIDER, A. D., and BHETHANABOTLA, V. R. Acoustothermal heating in surface acoustic wave driven microchannel flow. Physics of Fluids, 31, 106106 (2019)

    Article  Google Scholar 

  6. NI, Z., YIN, C., XU, G., XIE, L., HUANG, J., LIU, S., TU, J., GUO, X., and ZHANG, D. Modelling of SAW-PDMS acoustofluidics: physical fields and particle motions influenced by different descriptions of the PDMS domain. Lab on a Chip, 19(16), 2728–2740 (2019)

    Article  Google Scholar 

  7. SKOV, N. R. and BRUUS, H. Modeling of microdevices for SAW-based acoustophoresis — a study of boundary conditions. Micromachines, 7(10), 1–14 (2016)

    Article  Google Scholar 

  8. BARNKOB, R., NAMA, N., REN, L., HUANG, T. J., COSTANZO, F., and KÄHLER, C. J. Acoustically driven fluid and particle motion in confined and leaky systems. Physical Review Applied, 9(1), 014027 (2018)

    Article  Google Scholar 

  9. NAMA, N., BARNKOB, R., MAO, Z., KÄHLER, C. J., COSTANZO, F., and HUANG, T. J. Numerical study of acoustophoretic motion of particles in a PDMS microchannel driven by surface acoustic waves. Lab on a Chip, 15(12), 2700–2709 (2015)

    Article  Google Scholar 

  10. OZCELIK, A., RUFO, J., GUO, F., GU, Y., LI, P., LATA, J., and HUANG, T. J. Acoustic tweezers for the life sciences. Nature Methods, 15(12), 1021–1028 (2018)

    Article  Google Scholar 

  11. HSU, J. C., HSU, C. H., and HUANG, Y. W. Acoustophoretic control of microparticle transport using dual-wavelength surface acoustic wave devices. Micromachines, 10(1), 52 (2019)

    Article  Google Scholar 

  12. MANOR, O., REZK, A. R., FRIEND, J. R., and YEO, L. Y. Dynamics of liquid films exposed to high-frequency surface vibration. Physical Review E, 91(5), 053015 (2015)

    Article  Google Scholar 

  13. REZK, A. R., MANOR, O., FRIEND, J. R., and YEO, L. Y. Unique fingering instabilities and soliton-like wave propagation in thin acoustowetting films. Nature Communications, 3, 1167 (2012)

    Article  Google Scholar 

  14. GUBAIDULLIN, D. A., OSIPOV, P. P., and ABDYUSHEV, A. A. Simulation using the limiting velocity approach of acoustic streaming establishment and aerosol particle focusing in complex-shaped acoustofluidic devices. Applied Mathematical Modelling, 92, 785–797 (2021)

    Article  MathSciNet  Google Scholar 

  15. HAHN, P., LEIBACHER, I., BAASCH, T., and DUAL, J. Numerical simulation of acoustofluidic manipulation by radiation forces and acoustic streaming for complex particles. Lab on a Chip, 15(22), 4302–4313 (2015)

    Article  Google Scholar 

  16. LEI, J., GLYNNE-JONES, P., and HILL, M. Acoustic streaming in the transducer plane in ultrasonic particle manipulation devices. Lab on a Chip, 13(11), 2133–2143 (2013)

    Article  Google Scholar 

  17. LEI, J., GLYNNE-JONES, P., and HILL, M. Comparing methods for the modelling of boundary-driven streaming in acoustofluidic devices. Microfluidics and Nanofluidics, 21(2), 23 (2017)

    Article  Google Scholar 

  18. MARAMIZONOUZ, S., RAHMATI, M., LINK, A., FRANKE, T., and FU, Y. Numerical and experimental studies of acoustic streaming effects on microparticles/droplets in microchannel flow. International Journal of Engineering Science, 169, 103563 (2021)

    Article  MathSciNet  Google Scholar 

  19. CHEN, C., ZHANG, S. P., MAO, Z., NAMA, N., GU, Y., HUANG, P. H., JING, Y., GUO, X., COSTANZO, F., and HUANG, T. J. Three-dimensional numerical simulation and experimental investigation of boundary-driven streaming in surface acoustic wave microfluidics. Lab on a Chip, 18(23), 3645–3654 (2018)

    Article  Google Scholar 

  20. LIU, X., ZHENG, T., and WANG, C. Three-dimensional modeling and experimentation of microfluidic devices driven by surface acoustic wave. Ultrasonics, 129, 106914 (2023)

    Article  Google Scholar 

  21. TAN, M. K. and YEO, L. Y. Hybrid finite-difference/lattice Boltzmann simulations of microchannel and nanochannel acoustic streaming driven by surface acoustic waves. Physical Review Fluids, 3(4), 044202 (2018)

    Article  Google Scholar 

  22. SRIPHUTKIAT, Y. and ZHOU, Y. Particle manipulation using standing acoustic waves in the microchannel at dual-frequency excitation: effect of power ratio. Sensors and Actuators, A: Physical, 263, 521–529 (2017)

    Article  Google Scholar 

  23. BRUUS, H. Theoretical Microfluidics, Oxford University Press, Oxford (2007)

    Google Scholar 

  24. LAURELL, T. and LENSHOF, A. Microscale Acoustofluidics, The Royal Society of Chemistry, London (2014)

    Book  Google Scholar 

  25. FRIEND, J. and YEO, L. Y. Microscale acoustofluidics: microfluidics driven via acoustics and ultrasonics. Reviews of Modern Physics, 83(2), 647–704 (2011)

    Article  Google Scholar 

  26. GUO, F., MAO, Z., CHEN, Y., XIE, Z., LATA, J. P., LI, P., REN, L., LIU, J., YANG, J., DAO, M., SURESH, S., and HUANG, T. J. Three-dimensional manipulation of single cells using surface acoustic waves. Proceedings of the National Academy of Sciences of the United States of America, 113(6), 1522–1527 (2016)

    Article  Google Scholar 

  27. VANNESTE, J. and BUHLER, O. Streaming by leaky surface acoustic waves. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, 467(2130), 1779–1800 (2011)

    Article  MathSciNet  Google Scholar 

  28. AI, Y., SANDERS, C. K., and MARRONE, B. L. Separation of escherichia coli bacteria from peripheral blood mononuclear cells using standing surface acoustic waves. Analytical Chemistry, 85(19), 9126–9134 (2013)

    Article  Google Scholar 

  29. HU, J. Ultrasonic Micro/Nano Manipulations: Principles and Examples, World Scientific, New Jersey (2014)

    Book  Google Scholar 

  30. SKOV, N. R., SEHGAL, P., KIRBY, B. J., and BRUUS, H. Three-dimensional numerical modeling of surface-acoustic-wave devices: acoustophoresis of micro-and nanoparticles including streaming. Physical Review Applied, 12(4), 044028 (2019)

    Article  Google Scholar 

  31. MORGAN, D. and PAIGE, E. G. S. Propagation Effects and Materials, Academic Press, New York (2007)

    Book  Google Scholar 

  32. JAZINI DORCHEH, F. and GHASSEMI, M. A discussion about the velocity distribution commonly used as the boundary condition in surface acoustic wave numerical simulations. Biomedical Microdevices, 25(4), 42 (2023)

    Article  Google Scholar 

  33. JIANG, Y., CHEN, J., XUAN, W., LIANG, Y., HUANG, X., CAO, Z., SUN, L., DONG, S., and LUO, J. Numerical study of particle separation through integrated multi-stage surface acoustic waves and modulated driving signals. Sensors, 23(5), 2771 (2023)

    Article  Google Scholar 

  34. LAI, T. W., TENNAKOON, T., CHAN, K. C., LIU, C. H., CHAO, C. Y. H., and FU, S. C. The effect of microchannel height on the acoustophoretic motion of sub-micron particles. Ultrasonics, 136, 107126 (2024)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Ghassemi.

Ethics declarations

Conflict of interest The authors declare no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jazini Dorcheh, F., Ghassemi, M. The viscous strip approach to simplify the calculation of the surface acoustic wave generated streaming. Appl. Math. Mech.-Engl. Ed. 45, 711–724 (2024). https://doi.org/10.1007/s10483-024-3101-6

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10483-024-3101-6

Key words

Chinese Library Classification

2010 Mathematics Subject Classification

Navigation