Skip to main content

Advertisement

Log in

Flexural-wave-generation using a phononic crystal with a piezoelectric defect

  • Published:
Applied Mathematics and Mechanics Aims and scope Submit manuscript

Abstract

This paper proposes a method to amplify the performance of a flexural-wave-generation system by utilizing the energy-localization characteristics of a phononic crystal (PnC) with a piezoelectric defect and an analytical approach that accelerates the predictions of such wave-generation performance. The proposed analytical model is based on the Euler-Bernoulli beam theory. The proposed analytical approach, inspired by the transfer matrix and S-parameter methods, is used to perform band-structure and time-harmonic analyses. A comparison of the results of the proposed approach with those of the finite element method validates the high predictive capability and time efficiency of the proposed model. A case study is explored; the results demonstrate an almost ten-fold amplification of the velocity amplitudes of flexural waves leaving at a defect-band frequency, compared with a system without the PnC. Moreover, design guidelines for piezoelectric-defect-introduced PnCs are provided by analyzing the changes in wave-generation performance that arise depending on the defect location.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. OUDICH, M., GERALD, N. J., DENG, Y., and JING, Y. Tailoring structure-borne sound through bandgap engineering in phononic crystals and metamaterials: a comprehensive review. Advanced Functional Materials, 33(2), 2206309 (2023)

    Article  Google Scholar 

  2. KENNEDY, J. and LIM, C. W. Machine learning and deep learning in phononic crystals and metamaterials: a review. Materials Today Communications, 33, 104606 (2022)

    Article  Google Scholar 

  3. LEE, G., LEE, D., PARK, J., JANG, Y., KIM, M., and RHO, J. Piezoelectric energy harvesting using mechanical metamaterials and phononic crystals. Communications Physics, 5(1), 94 (2022)

    Article  Google Scholar 

  4. LI, W., MENG, F., CHEN, Y., LI, Y. F., and HUANG, X. Topology optimization of photonic and phononic crystals and metamaterials: a review. Advanced Theory and Simulations, 2(7), 1900017 (2019)

    Article  Google Scholar 

  5. JO, S. H. and YOUN, B. D. Longitudinal wave localization using a one-dimensional phononic crystal with differently patterned double defects. International Journal of Mechanical Sciences, 237, 107783 (2023)

    Article  Google Scholar 

  6. JIN, J., HU, N. D., and HU, H. P. Size effects on the mixed modes and defect modes for a nanoscale phononic crystal slab. Applied Mathematics and Mechanics (English Edition), 44(1), 21–34 (2023) https://doi.org/10.1007/s10483-023-2945-6

    Article  MathSciNet  Google Scholar 

  7. MEHANEY, A. and ELSAYED, H. A. Hydrostatic pressure effects on a one-dimensional defective phononic crystal comprising a polymer material. Solid State Communications, 322, 114054 (2020)

    Article  Google Scholar 

  8. ZHANG, X., LI, Y., WANG, Y., JIA, Z., and LUO, Y. Narrow-band filter design of phononic crystals with periodic point defects via topology optimization. International Journal of Mechanical Sciences, 212, 106829 (2021)

    Article  Google Scholar 

  9. HE, F. Y., SHI, Z. Y., QIAN, D. H., LU, Y. K., XIANG, Y. J., and FENG, X. L. Flexural wave bandgap properties of phononic crystal beams with interval parameters. Applied Mathematics and Mechanics (English Edition), 44(2), 173–188 (2023) https://doi.org/10.1007/s10483-023-2947-8

    Article  MathSciNet  MATH  Google Scholar 

  10. JIANG, S., DAI, L. X., CHEN, H., HU, H. P., JIANG, W., and CHEN, X. D. Folding beam-type piezoelectric phononic crystal with low-frequency and broad band gap. Applied Mathematics and Mechanics (English Edition), 38(3), 411–422 (2017) https://doi.org/10.1007/s10483-017-2171-7

    Article  MathSciNet  Google Scholar 

  11. JO, S. H., YOON, H., SHIN, Y. C., and YOUN, B. D. Revealing defect-mode-enabled energy localization mechanisms of a one-dimensional phononic crystal. International Journal of Mechanical Sciences, 215, 106950 (2022)

    Article  Google Scholar 

  12. YAN, W., ZHANG, G., and GAO, Y. Investigation on the tunability of the band structure of two-dimensional magnetorheological elastomers phononic crystals plate. Journal of Magnetism and Magnetic Materials, 544, 168704 (2022)

    Article  Google Scholar 

  13. DENG, T., ZHANG, S., and GAO, Y. A magnetic-dependent vibration energy harvester based on the tunable point defect in 2D magneto-elastic phononic crystals. Crystals, 9(5), 261 (2019)

    Article  Google Scholar 

  14. WU, L. Y., WU, M. L., and CHEN, L. W. The narrow pass band filter of tunable 1D phononic crystals with a dielectric elastomer layer. Smart Materials and Structures, 18(1), 015011 (2008)

    Article  Google Scholar 

  15. ARRANGOIZ-ARRIOLA, P., WOLLACK, E. A., PECHAL, M., and WITMER, J. D. Coupling a superconducting quantum circuit to a phononic crystal defect cavity. Physical Review X, 8(3), 031007 (2018)

    Article  Google Scholar 

  16. SHAKERI, A., DARBARI, S., and MORAVVEJ-FARSHI, M. K. Designing a tunable acoustic resonator based on defect modes, stimulated by selectively biased PZT rods in a 2D phononic crystal. Ultrasonics, 92, 8–12 (2019)

    Article  Google Scholar 

  17. THOMES, R. L., BELI, D., and JUNIOR, C. D. M. Space-time wave localization in electromechanical metamaterial beams with programmable defects. Mechanical Systems and Signal Processing, 167, 108550 (2022)

    Article  Google Scholar 

  18. TIAN, Y., ZHANG, W., TAN, Z., and CHO, C. Chiral edge states for phononic crystals based on shunted piezoelectric materials. Extreme Mechanics Letters, 50, 101568 (2022)

    Article  Google Scholar 

  19. ALY, A. H., NAGATY, A., and KHALIFA, Z. Piezoelectric material and one-dimensional phononic crystal. Surface Review and Letters, 26(2), 1850144 (2019)

    Article  Google Scholar 

  20. WU, Y., MA, Y., ZHENG, H., and RAMAKRISHNA, S. Piezoelectric materials for flexible and wearable electronics: a review. Materials and Design, 211, 110164 (2021)

    Article  Google Scholar 

  21. JO, S. H. and YOUN, B. D. An improved analytical model that considers lateral effects of a phononic crystal with a piezoelectric defect for elastic wave energy harvesting. International Journal of Mechanical Sciences, 205, 106593 (2021)

    Article  Google Scholar 

  22. HE, Z., ZHANG, G., CHEN, X., CONG, Y., GU, S., and HONG, J. Elastic wave harvesting in piezoelectric-defect-introduced phononic crystal microplates. International Journal of Mechanical Sciences, 239, 107892 (2023)

    Article  Google Scholar 

  23. LYU, X. F., FANG, X., ZHANG, Z. Q., HUANG, Z. L., and CHUANG, K. C. Highly localized and efficient energy harvesting in a phononic crystal beam: defect placement and experimental validation. Crystals, 9(8), 391 (2019)

    Article  Google Scholar 

  24. HOSSEINKHANI, A., EBRAHIMIAN, F., YOUNESIAN, D., and MOAYEDIZADEH, A. Defected meta-lattice structures for the enhanced localized vibrational energy harvesting. Nano Energy, 100, 107488 (2022)

    Article  Google Scholar 

  25. JO, S. H. and YOUN, B. D. An explicit solution for the design of a target-frequency-customized, piezoelectric-defect-introduced phononic crystal for elastic wave energy harvesting. Journal of Applied Physics, 130(18), 184902 (2021)

    Article  Google Scholar 

  26. ZHONG, J. and XIANG, J. Designing a phononic crystal with a large defect to enhance elastic wave energy localization and harvesting. Japanese Journal of Applied Physics, 61(1), 017002 (2022)

    Article  Google Scholar 

  27. JO, S. H., LEE, D., YOON, H., and YOUN, B. D. Double piezoelectric defects in phononic crystals for ultrasonic transducers. Journal of Physics D: Applied Physics, 56(7), 074002 (2023)

    Article  Google Scholar 

  28. JO, S. H. and YOUN, B. D. Enhanced ultrasonic wave generation using energy-localized behaviors of phononic crystals. International Journal of Mechanical Sciences, 228, 107483 (2022)

    Article  Google Scholar 

  29. JO, S. H., SHIN, Y. C., CHOI, W., YOON, H., YOUN, B. D., and KIM, M. Double defects-induced elastic wave coupling and energy localization in a phononic crystal. Nano Convergence, 8(1), 27 (2021)

    Article  Google Scholar 

  30. LUO, Y. S., YANG, S. X., LYU, X. F., CHUANG, K. C., LIU, Y., HE, J., and CHENG, Q. C. Identifying delamination in carbon fiber composites based on defect modes in imperfect phononic crystals. Journal of Applied Physics, 131(5), 055109 (2022)

    Article  Google Scholar 

  31. WANG, Y., PERRAS, E., GOLUB, M. V., FOMENKO, S. I., ZHANG, C., and CHEN, W. Manipulation of the guided wave propagation in multilayered phononic plates by introducing interface delaminations. European Journal of Mechanics-A/Solids, 88, 104266 (2021)

    Article  MathSciNet  MATH  Google Scholar 

  32. ZHOU, W. and LIM, C. W. Topological edge modeling and localization of protected interface modes in 1D phononic crystals for longitudinal and bending elastic waves. International Journal of Mechanical Sciences, 159, 359–372 (2019)

    Article  Google Scholar 

  33. LI, P. and BIWA, S. Flexural waves in a periodic non-uniform Euler-Bernoulli beam: analysis for arbitrary contour profiles and applications to wave control. International Journal of Mechanical Sciences, 188, 105948 (2020)

    Article  Google Scholar 

  34. ERTURK, A. and INMAN, D. J. A distributed parameter electromechanical model for cantilevered piezoelectric energy harvesters. Journal of Vibration and Acoustics, 130(4), 041002 (2008)

    Article  Google Scholar 

  35. WANG, G. Analysis of bimorph piezoelectric beam energy harvesters using Timoshenko and Euler-Bernoulli beam theory. Journal of Intelligent Material Systems and Structures, 24(2), 226–239 (2013)

    Article  Google Scholar 

  36. ALI, A., PASHA, R. A., ELAHI, H., SHEERAZ, M. A., BIBI, S., HASSAN, Z. U., EUGENI, M., and GAUDENZI, P. Investigation of deformation in bimorph piezoelectric actuator: analytical, numerical and experimental approach. Integrated Ferroelectrics, 201(1), 94–109 (2019)

    Article  Google Scholar 

  37. CHEN, N., YAN, P., and OUYANG, J. A generalized approach on bending and stress analysis of beams with piezoelectric material bonded. Sensors and Actuators A: Physical, 290, 54–61 (2019)

    Article  Google Scholar 

  38. YI, J., WU, Z., XIA, R., and LI, Z. Reconfigurable metamaterial for asymmetric and symmetric elastic wave absorption based on exceptional point in resonant bandgap. Applied Mathematics and Mechanics (English Edition), 44(1), 1–20 (2023) https://doi.org/10.1007/s10483-023-2949-7

    Article  MathSciNet  MATH  Google Scholar 

  39. LI, Z., LIU, J., HU, B., WANG, Y., and SHEN, H. Wave propagation analysis of porous functionally graded piezoelectric nanoplates with a visco-Pasternak foundation. Applied Mathematics and Mechanics (English Edition), 44(1), 35–52 (2023) https://doi.org/10.1007/s10483-023-2953-7

    Article  MathSciNet  MATH  Google Scholar 

  40. ERTURK, A. and INMAN, D. J. An experimentally validated bimorph cantilever model for piezoelectric energy harvesting from base excitations. Smart Materials and Structures, 18(2), 025009 (2009)

    Article  Google Scholar 

  41. YOON, H., YOUN, B. D., and KIM, H. S. Kirchhoff plate theory-based electromechanically-coupled analytical model considering inertia and stiffness effects of a surface-bonded piezoelectric patch. Smart Materials and Structures, 25(2), 025017 (2016)

    Article  Google Scholar 

  42. MAZILU, T., DUMITRIU, M., and TUDORACHE, C. On the dynamics of interaction between a moving mass and an infinite one-dimensional elastic structure at the stability limit. Journal of Sound and Vibration, 330(5), 3729–3743 (2011)

    Article  Google Scholar 

  43. NORRIS, A. N. and PACKO, P. Non-symmetric flexural wave scattering and one-way extreme absorption. The Journal of the Acoustical Society of America, 146(1), 873–883 (2019)

    Article  Google Scholar 

  44. DONG, H. W., SU, X. X., WANG, Y. S., and ZHANG, C. Topological optimization of two-dimensional phononic crystals based on the finite element method and genetic algorithm. Structural and Multidisciplinary Optimization, 50, 593–604 (2014)

    Article  MathSciNet  Google Scholar 

  45. VERES, I. A., BERER, T., and MATSUDA, O. Complex band structures of two dimensional phononic crystals: analysis by the finite element method. Journal of Applied Physics, 114(8), 083519 (2013)

    Article  Google Scholar 

  46. XIE, L., XIA, B., LIU, J., HUANG, G., and LEI, J. An improved fast plane wave expansion method for topology optimization of phononic crystals. International Journal of Mechanical Sciences, 120, 171–181 (2017)

    Article  Google Scholar 

  47. CAO, Y., HOU, Z., and LIU, Y. Convergence problem of plane-wave expansion method for phononic crystals. Physics Letters A, 327(2–3), 247–253 (2004)

    Article  MATH  Google Scholar 

  48. HAN, L., ZHANG, Y., NI, Z. Q., ZHANG, Z. M., and JIANG, L. H. A modified transfer matrix method for the study of the bending vibration band structure in phononic crystal Euler beams. Physica B: Condensed Matter, 407(23), 4579–4583 (2012)

    Article  Google Scholar 

  49. SHU, H., LIU, W., LI, S., DONG, L., WANG, W., LIU, S., and ZHAO, D. Research on flexural wave band gap of a thin circular plate of piezoelectric radial phononic crystals. Journal of Vibration and Control, 22(7), 1777–1789 (2016)

    Article  MathSciNet  Google Scholar 

  50. JIANG, P., WANG, X. P., CHEN, T. N., and ZHU, J. Band gap and defect state engineering in a multi-stub phononic crystal plate. Journal of Applied Physics, 117(15), 154301 (2015)

    Article  Google Scholar 

  51. LI, Y., CHEN, T., WANG, X., MA, T., and JIANG, P. Acoustic confinement and waveguiding in two-dimensional phononic crystals with material defect states. Journal of Applied Physics, 116(2), 024904 (2014)

    Article  Google Scholar 

  52. KHAN, A., KHAN, F. R., and KIM, H. S. Electro-active paper as a flexible mechanical sensor, actuator and energy harvesting transducer: a review. Sensors, 18(10), 3474 (2018)

    Article  Google Scholar 

  53. ZASZCZYNSKA, A., GRADYS, A., and SAJKIEWICZ, P. Progress in the applications of smart piezoelectric materials for medical devices. Polymers, 12(11), 2754 (2020)

    Article  Google Scholar 

  54. GUO, Y., LI, L., and CHUANG, K. C. Analysis of bending waves in phononic crystal beams with defects. Crystals, 8(1), 21 (2018)

    Article  Google Scholar 

  55. ZHANG, Y., NI, Z. Q., JIANG, L. H., HAN, L., and KANG, X. W. Study of the bending vibration characteristic of phononic crystals beam-foundation structures by Timoshenko beam theory. International Journal of Modern Physics B, 29(20), 1550136 (2015)

    Article  MATH  Google Scholar 

  56. ZHAO, P., YUAN, L., MA, T., and WEI, H. Study on tunable band gap of flexural vibration in a phononic crystals beam with PBT. Crystals, 11(11), 1346 (2021)

    Article  Google Scholar 

Download references

Acknowledgements

The authors would like to acknowledge the support of Dongguk University Research Fund of 2023.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. H. Jo.

Additional information

Conflict of interest

The authors declare no conflict of interest.

Project supported by the Basic Science Research Program through the National Research Foundation of Korea, funded by the Ministry of Education (No. 2022R1I1A1A0105640611)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jo, S.H., Lee, D. Flexural-wave-generation using a phononic crystal with a piezoelectric defect. Appl. Math. Mech.-Engl. Ed. 44, 1241–1262 (2023). https://doi.org/10.1007/s10483-023-3015-7

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10483-023-3015-7

Key words

Chinese Library Classification

2010 Mathematics Subject Classification

Navigation