Skip to main content
Log in

Model-based adaptive locomotion and clustering control of microparticles through ultrasonic topological charge modulation

  • Published:
Applied Mathematics and Mechanics Aims and scope Submit manuscript

Abstract

We present a novel motion control technique for microrobot clusters to exploit the characteristics of the ultrasonic field. The method comprises two steps, i.e., introducing an ultrasonic actuation (UA) linear model for three-dimensional (3D) locomotion and controlling the topological charge (TC) in the ultrasonic vortex for microrobot clustering. Here, the TC is a controllable parameter for the expansion and contraction of the pressure null space inside the vortex. We present a TC control method to cluster sporadically distributed microrobots in a specific workspace. To validate the concept, a UA system composed of 30 ultrasonic transducers with 1 MHz frequency is fabricated, and the characteristics of the generated acoustic pressure field are analyzed through simulations. Subsequently, the performances of the adaptive controller for precise 3D locomotion and the TC control method for clustering are evaluated. Finally, the UA technology, which performs both clustering and locomotion in a complex manner, is validated with a gelatin phantom in an in-vitro environment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. RICOTTI, L., CAFARELLI, A., IACOVACCI, V., VANNOZZI, L., and MENCIASSI, A. Advanced micro-nano-bio systems for future targeted therapies. Current Nanoscience, 11(2), 144–160 (2015)

    Article  Google Scholar 

  2. DRINKWATER, B. W. Dynamic-field devices for the ultrasonic manipulation of microparticles. Lab on a Chip, 16(13), 2360–2375 (2016)

    Article  Google Scholar 

  3. LI, J., LI, T., XU, T., KIRISTI, M., LIU, W., WU, Z., and WANG, J. Magneto-acoustic hybrid nanomotor. Nano Letters, 15(7), 4814–4821 (2015)

    Article  Google Scholar 

  4. JONÁŠ, A. and ZEMANEK, P. Light at work: the use of optical forces for particle manipulation, sorting, and analysis. Electrophoresis, 29(24), 4813–4851 (2008)

    Article  Google Scholar 

  5. ANTFOLK, M., KIM, S. H., KOIZUMI, S., FUJII, T., and LAURELL, T. Label-free single-cell separation and imaging of cancer cells using an integrated microfluidic system. Scientific Reports, 7(1), 1–12 (2017)

    Article  Google Scholar 

  6. YAN, B., CHEN, B., LIU, F., WU, J., and XIONG, Y. Combining field-modulating electroosmotic vortex and insulating post to manipulate particles based on dielectrophoresis. Applied Mathematics and Mechanics (English Edition), 42(3), 371–386 (2021) https://doi.org/10.1007/s10483-021-2706-5

    Article  MathSciNet  Google Scholar 

  7. XIE, C., CHEN, B., YAN, B., and WU, J. A new method for particle manipulation by combination of dielectrophoresis and field-modulated electroosmotic vortex. Applied Mathematics and Mechanics (English Edition), 39(3), 409–422 (2018) https://doi.org/10.1007/s10483-018-2303-9

    Article  MathSciNet  Google Scholar 

  8. NGUYEN, K. T., HOANG, M. C., GO, G., KANG, B., CHOI, E., PARK, J. O., and KIM, C. S. Regularization-based independent control of an external electromagnetic actuator to avoid singularity in the spatial manipulation of a microrobot. Control Engineering Practice, 97, 104340 (2020)

    Article  Google Scholar 

  9. KUMMER, M. P., ABBOTT, J. J., KRATOCHVIL, B. E., BORER, R., SENGUL, A., and NELSON, B. J. OctoMag: an electromagnetic system for 5-DOF wireless micromanipulation. IEEE Transactions on Robotics, 26(6), 1006–1017 (2010)

    Article  Google Scholar 

  10. ONGARO, F., PANE, S., SCHEGGI, S., and MISRA, S. Design of an electromagnetic setup for independent three-dimensional control of pairs of identical and nonidentical microrobots. IEEE Transactions on Robotics, 35(1), 174–183 (2018)

    Article  Google Scholar 

  11. DING, X., LIN, S. C. S., KIRALY, B., YUE, H., LI, S., CHIANG, I. K., and HUANG, T. J. On-chip manipulation of single microparticles, cells, and organisms using surface acoustic waves. Proceedings of the National Academy of Sciences, 109(28), 11105–11109 (2012)

    Article  Google Scholar 

  12. TAKEUCHI, M. and YAMANOUCHI, K. Ultrasonic micromanipulation of small particles in liquid. Japanese Journal of Applied Physics, 33(5S), 3045 (1994)

    Article  Google Scholar 

  13. HAAKE, A., NEILD, A., RADZIWILL, G., and DUAL, J. Positioning, displacement, and localization of cells using ultrasonic forces. Biotechnology and Bioengineering, 92(1), 8–14 (2005)

    Article  Google Scholar 

  14. HAAKE, A. and DUAL, J. Contactless micromanipulation of small particles by an ultrasound field excited by a vibrating body. The Journal of the Acoustical Society of America, 117(5), 2752–2760 (2005)

    Article  Google Scholar 

  15. WOOD, C. D., CUNNINGHAM, J. E., O’RORKE, R., WÄLTI, C., LINFIELD, E. H., DAVIES, A. G., and EVANS, S. D. Formation and manipulation of two-dimensional arrays of micron-scale particles in microfluidic systems by surface acoustic waves. Applied Physics Letters, 94(5), 054101 (2009)

    Article  Google Scholar 

  16. GUO, F., MAO, Z., CHEN, Y., XIE, Z., LATA, J. P., LI, P., REN, L., LIU, J., YANG, J., DAO, M., SURESH, S., and HUANG, T. J. Three-dimensional manipulation of single cells using surface acoustic waves. Proceedings of the National Academy of Sciences, 113(6), 1522–1527 (2016)

    Article  Google Scholar 

  17. COURTNEY, C. R., ONG, C. K., DRINKWATER, B. W., BERNASSAU, A. L., WILCOX, P. D., and CUMMING, D. R. S. Manipulation of particles in two dimensions using phase controllable ultrasonic standing waves. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, 468(2138), 337–360 (2012)

    Article  Google Scholar 

  18. CHEN, X., LAM, K. H., CHEN, R., CHEN, Z., QIAN, X., ZHANG, J., and ZHOU, Q. Acoustic levitation and manipulation by a high-frequency focused ring ultrasonic transducer. Applied Physics Letters 114(5), 054103 (2019)

    Article  Google Scholar 

  19. WU, J. Acoustical tweezers. The Journal of the Acoustical Society of America, 89(5), 2140–2143 (1991)

    Article  Google Scholar 

  20. LEE, J., TEH, S. Y., LEE, A., KIM, H. H., LEE, C., and SHUNG, K. K. Single beam acoustic trapping. Applied Physics Letters, 95(7), 073701 (2009)

    Article  Google Scholar 

  21. LEE, J., LEE, C., KIM, H. H., JAKOB, A., LEMOR, R., TEH, S. Y., and SHUNG, K. K. Targeted cell immobilization by ultrasound microbeam. Biotechnology and Bioengineering, 108(7), 1643–1650 (2011)

    Article  Google Scholar 

  22. HWANG, J. Y., LEE, C., LAM, K. H., KIM, H. H., LEE, J., and SHUNG, K. K. Cell membrane deformation induced by a fibronectin-coated polystyrene microbead in a 200-MHz acoustic trap. IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, 61(3), 399–406 (2014)

    Article  Google Scholar 

  23. SILVA, G. T. and BAGGIO, A. L. Designing single-beam multitrapping acoustical tweezers. Ultrasonics, 56, 449–455 (2015)

    Article  Google Scholar 

  24. BARESCH, D., THOMAS, J. L., and MARCHIANO, R. Observation of a single-beam gradient force acoustical trap for elastic particles: acoustical tweezers. Physical Review Letters, 116(2), 024301 (2016)

    Article  Google Scholar 

  25. MARZO, A. and DRINKWATER, B. W. Holographic acoustic tweezers. Proceedings of the National Academy of Sciences, 116(1), 84–89 (2019)

    Article  Google Scholar 

  26. MARZO, A., SEAH, S. A., DRINKWATER, B. W., SAHOO, D. R., LONG, B., and SUBRAMANIAN, S. Holographic acoustic elements for manipulation of levitated objects. Nature Communications, 6(1), 1–7 (2015)

    Article  Google Scholar 

  27. MARZO, A., BARNES, A., and DRINKWATER, B. W. TinyLev: a multi-emitter single-axis acoustic levitator. Review of Scientific Instruments, 88(8), 085105 (2017)

    Article  Google Scholar 

  28. MARZO, A., CALEAP, M., and DRINKWATER, B. W. Acoustic virtual vortices with tunable orbital angular momentum for trapping of Mie particles. Physical Review Letters, 120(4), 044301 (2018)

    Article  Google Scholar 

  29. GHANEM, M. A., MAXWELL, A. D., WANG, Y. N., CUNITZ, B. W., KHOKHLOVA, V. A., SAPOZHNIKOV, O. A., and BAILEY, M. R. Noninvasive acoustic manipulation of objects in a living body. Proceedings of the National Academy of Sciences, 117(29), 16848–16855 (2020)

    Article  Google Scholar 

  30. YANG, Y., MA, T., LI, S., ZHANG, Q., HUANG, J., LIU, Y., and ZHENG, H. Self-navigated 3D acoustic tweezers in complex media based on time reversal. Research, 1, 801–813 (2021)

    Google Scholar 

  31. KHAN, S. A. Vortex type oscillations in a multi-component plasma. Results in Physics, 7, 4065–4070 (2017)

    Article  Google Scholar 

  32. SHI, C., DUBOIS, M., WANG, Y., and ZHANG, X. High-speed acoustic communication by multiplexing orbital angular momentum. Proceedings of the National Academy of Sciences, 114(28), 7250–7253 (2017)

    Article  Google Scholar 

  33. LO, W. C., FAN, C. H., HO, Y. J., LIN, C. W., and YEH, C. K. Tornado-inspired acoustic vortex tweezer for trapping and manipulating microbubbles. Proceedings of the National Academy of Sciences, 118(4), e2023188118 (2021)

    Article  Google Scholar 

  34. DONG, Q. H. and CHEN, L. Impact dynamics analysis of free-floating space manipulator capturing satellite on orbit and robust adaptive compound control algorithm design for suppressing motion. Applied Mathematics and Mechanics (English Edition), 35(4), 413–422 (2014) https://doi.org/10.1007/s10483-014-1801-7

    Article  MathSciNet  MATH  Google Scholar 

  35. BRUUS, H. Acoustofluidics 7: the acoustic radiation force on small particles. Lab on a Chip, 12(6), 1014–1021 (2012)

    Article  Google Scholar 

  36. LAURELL, T., PETERSSON, F., and NILSSON, A. Chip integrated strategies for acoustic separation and manipulation of cells and particles. Chemical Society Reviews, 36(3), 492–506 (2007)

    Article  Google Scholar 

  37. CAO, H. X., JUNG, D., LEE, H. S., GO, G., NAN, M., CHOI, E., KIM, C. S., PARK, J. O., and KANG, B. Micromotor manipulation using ultrasonic active traveling waves. Micromachines, 12(2), 192 (2021)

    Article  Google Scholar 

  38. DAHMANI, J., LAPORTE, C., PEREIRA, D., BÉLANGER, P., and PETIT, Y. Predictive model for designing soft-tissue mimicking ultrasound phantoms with adjustable elasticity. IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, 67(4), 715–726 (2019)

    Article  Google Scholar 

Download references

Funding

Project supported by the Korea Health Technology Development R&D Project through the Korea Health Industry Development Institute (KHIDI), funded by the Ministry of Health & Welfare, Republic of Korea (No. HI19C0642) and the National Research Foundation of Korea (NRF) grant funded by the Korea government (MSIT) (No. 2023R1A2C2003086)

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to C. S. Kim.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lee, H.S., Cao, H.X., Jung, D. et al. Model-based adaptive locomotion and clustering control of microparticles through ultrasonic topological charge modulation. Appl. Math. Mech.-Engl. Ed. 44, 623–640 (2023). https://doi.org/10.1007/s10483-023-2973-9

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10483-023-2973-9

Key words

Chinese Library Classification

2010 Mathematics Subject Classification

Navigation