Skip to main content

Advertisement

Log in

Flow of Eyring-Powell liquid due to oscillatory stretchable curved sheet with modified Fourier and Fick’s model

  • Published:
Applied Mathematics and Mechanics Aims and scope Submit manuscript

Abstract

This study deals with the features of the mass and heat transport mechanism by adopting a modified version of Fourier and Fick’s model known as the Cattaneo-Christov double diffusive theory. The time-dependent magnetohydrodynamic (MHD) flow of the Eyring-Powell liquid across an oscillatory stretchable curved sheet in the presence of Fourier and Fick’s model is investigated. The acquired set of flow equations is transformed into the form of nonlinear partial differential equations (PDEs) by applying appropriate similarity variables. A convergent series solution to the developed nonlinear equations is accomplished with the help of an analytical approach, i.e., the homotopy analysis method (HAM). The consequences of diverse parameters, including the dimensionless Eyring-Powell liquid parameter, the radius of curvature, the Schmidt/Prandtl numbers, the ratio of the oscillatory frequency of the sheet to its stretchable rate constant, the mass and thermal relaxation variables involved in the flow, and the heat and mass properties, are displayed through graphs and tables. It is noted from this study that the amplitude of the pressure distribution rises for the high parametric values of the Eyring-Powell parameter.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. CRANE, L. J. Flow past a stretching plate. Zeitschrift für Angewandte Mathematik und Physik, 21(4), 645–647 (1970)

    Article  Google Scholar 

  2. ALHARBI, S. M., BAZID, M. A., and EL GENDY, M. S. Heat and mass transfer in MHD visco-elastic fluid flow through a porous medium over a stretching sheet with chemical reaction. Applied Mathematics, 1(6), 446–455 (2010)

    Article  Google Scholar 

  3. HAYAT, T., QASIM, M., and ABBAS, Z. Radiation and mass transfer effects on the magnetohydrodynamic unsteady flow induced by a stretching sheet. Zeitschrift für Naturforschung A, 65(3), 231–239 (2010)

    Article  Google Scholar 

  4. HAYAT, T., SAIF, R. S., ELLAHI, R., MUHAMMAD, T., and AHMAD, B. Numerical study of boundary-layer flow due to a nonlinear curved stretching sheet with convective heat and mass conditions. Results in Physics, 7, 2601–2606 (2017)

    Article  Google Scholar 

  5. YASMIN, A., ALI, K., and ASHRAF, M. Study of heat and mass transfer in MHD flow of micropolar fluid over a curved stretching sheet. Scientific Reports, 10, 4581 (2020)

    Article  Google Scholar 

  6. WÖHLISCH, E. Adolf fick und die heutige physiologie. Naturwissenschaften, 26(36), 585–591 (1938)

    Article  Google Scholar 

  7. FOURIER, J. B. J. Théorie Analytique de la Chaleur, Didot, Paris (1822)

    MATH  Google Scholar 

  8. CATTANEO, C. Sulla conduzione del calore. Atti Semin. Mat. Fis. della Universitàdi Modena, 3, 83–101 (1948)

    MathSciNet  MATH  Google Scholar 

  9. CHRISTOV, C. I. On frame indifferent formulation of the Maxwell-Cattaneo model of finite-speed heat conduction. Mechanics Research Communications, 36(4), 481–486 (2009)

    Article  MathSciNet  Google Scholar 

  10. HAYAT, T., FAROOQ, M., ALSAEDI, A., and AL-SOLAMY, F. Impact of Cattaneo-Christov heat flux in the flow over a stretching sheet with variable thickness. AIP Advances, 5(8), 087159 (2015)

    Article  Google Scholar 

  11. KHAN, A. A., BATOOL, R., and KOUSAR, N. Examining the behavior of MHD micropolar fluid over curved stretching surface based on the modified Fourier law. Scientia Iranica, 28, 223–230 (2021)

    Google Scholar 

  12. SUI, J., ZHENG, L., and ZHANG, X. Boundary layer heat and mass transfer with Cattaneo-Christov double-diffusion in upper-convected Maxwell nanofluid past a stretching sheet with slip velocity. International Journal of Thermal Sciences, 104, 461–468 (2016)

    Article  Google Scholar 

  13. MALIK, R., KHAN, M., SHAFIQ, A., MUSHTAQ, M., and HUSSAIN, M. An analysis of Cattaneo-Christov double-diffusion model for Sisko fluid flow with velocity slip. Results in Physics, 7, 1232–1237 (2017)

    Article  Google Scholar 

  14. HAYAT, T., QAYYUM, S., SHEHZAD, S. A., and ALSAEDI, A. Cattaneo-Christov double-diffusion theory for three-dimensional flow of viscoelastic nanofluid with the effect of heat generation/absorption. Results in Physics, 8, 489–495 (2018)

    Article  Google Scholar 

  15. SRINIVAS REDDY, C. and ALI, F. Cattaneo-Christov double diffusion theory for MHD cross nanofluid flow towards a vertical stretching sheet with activation energy. International Journal of Ambient Energy (2020) https://doi.org/10.1080/01430750.2020.1852113

  16. MUHAMMAD, T., RAFIQUE, K., ASMA, M., and ALGHAMDI, M. Darcy-Forchheimer flow over an exponentially stretching curved surface with Cattaneo-Christov double diffusion. Physica A: Statistical Mechanics and Its Applications, 556, 123968 (2020)

    Article  MathSciNet  Google Scholar 

  17. WANG, C. Y. Nonlinear streaming due to the oscillatory stretching of a sheet in a viscous fluid. Acta Mechanica, 72(3), 261–268 (1988)

    Article  Google Scholar 

  18. SIDDAPPA, B., ABEL, S., and HONGUNTI, V. Oscillatory motion of a viscoelastic fluid past a stretching sheet. Il Nuovo Cimento D, 17, 53–60 (1995)

    Article  Google Scholar 

  19. ALI, N., KHAN, S. U., and ABBAS, Z. Hydromagnetic flow and heat transfer of a Jeffrey fluid over an oscillatory stretching surface. Zeitschrift fuür Naturforschung A, 70(7), 567–576 (2015)

    Article  Google Scholar 

  20. KHAN, S. U. and SHEHZAD, S. A. Brownian movement and thermophoretic aspects in third-grade nanofluid over oscillatory moving sheet. Physica Scripta, 94(9), 095202 (2019)

    Article  Google Scholar 

  21. ABBAS, Z., IMRAN, M., and NAVEED, M. Time-dependent flow of thermally developed viscous fluid over an oscillatory stretchable curved surface. Alexandria Engineering Journal, 59(6), 4377–4390 (2020)

    Article  Google Scholar 

  22. IMRAN, M., ABBAS, Z., NAVEED, M., and SALAMAT, N. Impact of Joule heating and melting on time-dependent flow of nanoparticles due to an oscillatory stretchable curved wall. Alexandria Engineering Journal, 60(4), 4097–4113 (2021)

    Article  Google Scholar 

  23. NAVEED, M., IMRAN, M., and ABBAS, Z. Curvilinear flow of micropolar fluid with Cattaneo-Christov heat flux model due to oscillation of curved stretchable sheet. Zeitschrift für Naturforschung A (2021) https://doi.org/10.1515/zna-2021-0006

  24. POWELL, R. E. and EYRING, H. Mechanisms for the relaxation theory of viscosity. nature, 154(3909), 427–428 (1944)

    Article  Google Scholar 

  25. DAWAR, A., SHAH, Z., IDREES, M., KHAN, W., ISLAM, S., and GUL, T. Impact of thermal radiation and heat source/sink on Eyring-Powell fluid flow over an unsteady oscillatory porous stretching surface. Mathematical and Computational Applications, 23(2), 20 (2018)

    Article  MathSciNet  Google Scholar 

  26. ABBAS, Z., RAFIQ, M., and NAVEED, M. Analysis of Eyring-Powell liquid flow in curved channel with Cattaneo-Christov heat flux model. Journal of the Brazilian Society of Mechanical Sciences and Engineering, 40, 390 (2018)

    Article  Google Scholar 

  27. ALHARBI, S. O., DAWAR, A., SHAH, Z., KHAN, W., IDREES, M., ISLAM, S., and KHAN, I. Entropy generation in MHD Eyring-Powell fluid flow over an unsteady oscillatory porous stretching surface under the impact of thermal radiation and heat source/sink. Applied Sciences, 8(12), 2588 (2018)

    Article  Google Scholar 

  28. KHAN, S. U., VAIDYA, H., CHAMMAM, W., MUSMAR, S. E. A., PRASAD, K. V., and TLILI, I. Triple diffusive unsteady flow of Eyring-Powell nanofluid over a periodically accelerated surface with variable thermal features. Frontiers in Physics, 8, 246 (2020)

    Article  Google Scholar 

  29. KHAN, S. U., SHEHZAD, S. A., RAUF, A., and ALI, N. Mixed convection flow of couple stress nanofluid over oscillatory stretching sheet with heat absorption/generation effects. Results in Physics, 8, 1223–1231 (2018)

    Article  Google Scholar 

  30. NARLA, V. K., BISWAS, C., and RAO, G. A. Entropy analysis of MHD fluid flow over a curved stretching sheet. AIP Conference Proceedings, 2246, 020099 (2020)

    Article  Google Scholar 

  31. MEGAHED, A. M., GHONEIM, N. I., REDDY, M. G., and EL-KHATIB, M. Magnetohydrodynamic fluid flow due to an unsteady stretching sheet with thermal radiation, porous medium, and variable heat flux. Advances in Astronomy, 2021, 6686883 (2021)

    Article  Google Scholar 

  32. SHAFIQ, A., HAMMOUCH, Z., and SINDHU, T. N. Bioconvective MHD flow of tangent hyperbolic nanofluid with Newtonian heating. International Journal of Mechanical Sciences, 133, 759–766 (2017)

    Article  Google Scholar 

  33. SHAFIQ, A. and SINDHU, T. N. Statistical study of hydromagnetic boundary layer flow of Williamson fluid regarding a radiative surface. Results in Physics, 7, 3059–3067 (2017)

    Article  Google Scholar 

  34. SHAFIQ, A., SINDHU, T. N., and HAMMOUCH, Z. Characteristics of homogeneous heterogeneous reaction on flow of Walters’ B liquid under the statistical paradigm. Applied Analysis and Computation, Springer, Singapore, 295–311 (2018)

    Google Scholar 

  35. SHAFIQ, A., HAMMOUCH, Z., and OZTOP, H. F. Radiative MHD flow of third-grade fluid towards a stretched cylinder. International Conference on Computational Mathematics and Engineering Sciences, Springer, Cham, 166–185 (2019)

    Google Scholar 

  36. RASOOL, G., ZHANG, T., CHAMKHA, A. J., SHAFIQ, A., TLILI, I., and SHAHZADI, G. Entropy generation and consequences of binary chemical reaction on MHD Darcy-Forchheimer Williamson nanofluid flow over non-linearly stretching surface. Entropy, 22, 18 (2020)

    Article  MathSciNet  Google Scholar 

  37. SHAFIQ, A., HAMMOUCH, Z., SINDHU, T. N., and BALEANU, D. Statistical approach of mixed convective flow of third-grade fluid towards an exponentially stretching surface with convective boundary condition. Special Functions and Analysis of Differential Equations, Chapman and Hall/CRC, Boca Raton, 307–319 (2020)

    Chapter  Google Scholar 

  38. SHAFIQ, A., SINDHU, T. N., and AL-MDALLAL, Q. M. A sensitivity study on carbon nanotubes significance in Darcy-Forchheimer flow towards a rotating disk by response surface methodology. Scientific Reports, 11, 8812 (2021)

    Article  Google Scholar 

Download references

Acknowledgements

The authors are grateful to the respected reviewers for their positive comments and constructive ideas for improving the manuscript’s quality.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Naveed.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Imran, M., Abbas, Z. & Naveed, M. Flow of Eyring-Powell liquid due to oscillatory stretchable curved sheet with modified Fourier and Fick’s model. Appl. Math. Mech.-Engl. Ed. 42, 1461–1478 (2021). https://doi.org/10.1007/s10483-021-2779-9

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10483-021-2779-9

Key words

Chinese Library Classification

2010 Mathematics Subject Classification

Navigation