Skip to main content
Log in

An analytical study on the Rayleigh wave generation in a stratified structure

  • Published:
Applied Mathematics and Mechanics Aims and scope Submit manuscript

Abstract

In this paper, an analytical method is used to investigate the Rayleigh wave generation in a stratified structure and the wave generation in a dry sandy layer constrained between the couple stress and inhomogeneous orthotropic half-spaces. This study is devoted to analyzing the impact of various effective parameters associated with the media on the phase velocities of the wave. The displacement components for each medium are derived by implementing the separable variable method. The frequency equation is secured by using the displacement components in the boundary conditions, imposed at the interfaces between the layer and half-spaces. Moreover, the secured equation is the relation between the phase velocity and the wave number. Numerical computations are performed, and graphical representations are demonstrated between the phase velocity and the wave number for both phase velocities with different values of the parameters. The comparison between the phase velocities is observed for the same value of each parameter.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. RAYLEIGH, L. On waves propagated along the plane surface of an elastic solid. Proceedings of the London Mathematical Society, 1, 4–11 (1885)

    Article  MathSciNet  Google Scholar 

  2. BROMWICH, T. J. On the influence of gravity on elastic waves, and, in particular on the vibrations of an elastic globe. Proceedings of the London Mathematical Society, 1, 98–165 (1898)

    Article  MathSciNet  Google Scholar 

  3. TOUPIN, R. A. Elastic materials with couple stresses. Archive for Rational Mechanics and Analysis, 11, 385–414 (1962)

    Article  MathSciNet  Google Scholar 

  4. MINDLIN, R. D. and TIERSTEN, H. F. Effects of couple-stresses in linear elasticity. Archive for Rational Mechanics and Analysis, 11, 415–448 (1962)

    Article  MathSciNet  Google Scholar 

  5. NOWACKI, W. Micropolar Elasticity, International Center for Mechanical Sciences, Courses and Lectures No. 151, Springer-Verlag, New York (1974)

    Google Scholar 

  6. ERINGEN, A. C. Theory of Micropolar Elasticity, Academic Press, New York (1968)

    MATH  Google Scholar 

  7. VOIGT, W. Theoretical studies on the elasticity relationships of crystals. Abhandlungen der Gesellschaft der Wissenschaften zu G¨ottingen, 34, 3–51 (1887)

    Google Scholar 

  8. COSSERAT, E. and COSSERAT, F. Deformable Bodies, Hermann, Paris (1909)

    MATH  Google Scholar 

  9. KOITER, W. T. Couple stresses in the theory of elasticity, I and II. Koninklijke Nederlandse Akademie van Wetenschappen, Series B, 67, 17–44 (1964)

    MathSciNet  MATH  Google Scholar 

  10. HADJESFANDIARI, A. R. and DARGUSH, G. F. Couple stress theory for solids. International Journal of Solids and Structures, 48, 2496–2510 (2011)

    Article  Google Scholar 

  11. SHARMA, V. and KUMAR, S. Velocity dispersion in an elastic plate with microstructure effects of characteristic length in a couple stress model. Meccanica, 49, 1083–1090 (2014)

    Article  MathSciNet  Google Scholar 

  12. SHARMA, V. and KUMAR, S. Dispersion of Rayleigh waves in a microstructural couple stress substrate loaded with liquid layer under the effects of gravity. Archives of Acoustics, 43, 11–20 (2018)

    Google Scholar 

  13. KAR, B. K., PAL, A. K., and KALYANI, V. K. Propagation of Love waves in an irregular dry sandy layer. Acta Geophysica Polonica, 34, 157–170 (1986)

    Google Scholar 

  14. TOMAR, S. K. and KAUR, J. Sh-waves at a corrugated interface between a dry sandy half-space and an anisotropic elastic half-space. Acta Mechanica, 190, 1–28 (2007)

    Article  Google Scholar 

  15. PAL, J. and GHORAI, A. P. Propagation of Love wave in sandy layer under initial stress above anisotropic porous half-space under gravity. Transport in Porous Media, 109, 297–316 (2015)

    Article  MathSciNet  Google Scholar 

  16. DEY, S., GUPTA, A. K., and GUPTA, S. Effect of gravity and initial stress on torsional surface waves in dry sandy medium. Journal of Engineering Mechanics, 128, 1115–1118 (2002)

    Article  Google Scholar 

  17. DZIEWONSKI, A. M. and ANDERSON, D. L. Preliminary reference Earth model. Physics of the Earth and Planetary Interiors, 25, 297–356 (1981)

    Article  Google Scholar 

  18. CRAMPIN, S. The fracture criticality of crustal rocks. Geophysical Journal International, 118, 428–438 (1994)

    Article  Google Scholar 

  19. ABD-ALLA, A. M., ABO-DAHAB, S. M., and BAYONES, F. S. Propagation of Rayleigh waves in magneto-thermo-elastic half-space of a homogeneous orthotropic material under the effect of rotation, initial stress and gravity field. Journal of Vibration and Control, 19, 1395–1420 (2013)

    Article  MathSciNet  Google Scholar 

  20. ABD-ALLA, A. M., ABO-DAHAB, S. M., AHMED, S. M., and RASHID, M. M. Rayleigh surface wave propagation in an orthotropic rotating magneto-thermoelastic medium subjected to gravity and initial stress. Mechanics of Advanced Materials and Structures (2019) https://doi.org/10.1080/15376494.2018.1512019

    Google Scholar 

  21. VINH, P. C. and LINH, N. T. K. An approximate secular equation of Rayleigh waves propagating in an orthotropic elastic half-space coated by a thin orthotropic elastic layer. Wave Motion, 49, 681–689 (2012)

    Article  MathSciNet  Google Scholar 

  22. VINH, P. C. and ANH, V. T. N. Rayleigh waves in a layered orthotropic elastic half-space with sliding contact. Journal of Vibration and Control, 24, 2070–2079 (2018)

    Article  MathSciNet  Google Scholar 

  23. KUMAR, R., ABO-DAHAB, S. M., and DEVI, S. Rayleigh waves at the boundary surface of modified couple stress generalized thermoelastic with mass diffusion. Advanced Composite Materials, 27, 309–329 (2018)

    Article  Google Scholar 

  24. KUMAR, R., DEVI, S., and ABO-DAHAB, S. M. Propagation of Rayleigh waves in modified couple stress generalized thermoelastic with a three-phase-lag model. Waves in Random and Complex Media (2019) https://doi.org/10.1080/17455030.2019.1588482

    Google Scholar 

  25. SINGH, A. K., DAS, A., and RAY, A. Rayleigh-type wave propagation through liquid layer over corrugated substrate. Applied Mathematics and Mechanics (English Edition), 38(5), 851–866 (2017) https://doi.org/10.1007/s10483-017-2205-8

    Article  MathSciNet  Google Scholar 

  26. SINGH, P., CHATTOPADHYAY, A., and SINGH, A. K. Rayleigh-type wave propagation in incompressible visco-elastic media under initial stress. Applied Mathematics and Mechanics (English Edition), 39(3), 317–334 (2018) https://doi.org/10.1007/s10483-018-2306-9

    Article  MathSciNet  Google Scholar 

  27. KAKAR, R. and KAKAR, S. Electro-magneto-thermoelastic surface waves in non-homogeneous orthotropic granular half space. Geomechanics and Engineering, 7, 1–36 (2014)

    Article  Google Scholar 

  28. ALAM, P., KUNDU, S., and GUPTA, S. Dispersion and attenuation of torsional wave in a viscoelastic layer bonded between a layer and a half-space of dry sandy media. Applied Mathematics and Mechanics (English Edition), 38(9), 1313–1328 (2017) https://doi.org/10.1007/s10483-017-2239-8

    Article  MathSciNet  Google Scholar 

  29. PAL, P. C., KUMAR, S., and MANDAL, D. Surface wave propagation in sandy layer overlying a liquid saturated porous half-space and lying under a uniform liquid layer. Mechanics of Advanced Materials and Structures, 23, 59–65 (2016)

    Article  Google Scholar 

  30. ALAM, P., KUNDU, S., and GUPTA, S. Effect of magneto-elasticity, hydrostatic stress and gravity on Rayleigh waves in a hydrostatic stressed magneto-elastic crystalline medium over a gravitating half-space with sliding contact. Mechanics Research Communications, 89, 11–17 (2018)

    Article  Google Scholar 

  31. MAHMOUD, S. R. Effect of non-homogenity, magnetic field and gravity field on Rayleigh waves in an initially stressed elastic half-space of orthotropic material subject to rotation. Journal of Computational and Theoretical Nanoscience, 11, 1627–1634 (2014)

    Article  Google Scholar 

  32. DALLY, J. W. and THAU, S. A. Observations of stress wave propagation in a half-plane with boundary loading. International Journal of Solids and Structures, 3, 293–308 (1967)

    Article  Google Scholar 

  33. GEORGIADIS, H. G. and VELGAKI, E. G. High-frequency Rayleigh waves in materials with micro-structure and couple-stress effects. International Journal of Solids and Structures, 40, 2501–2520 (2003)

    Article  Google Scholar 

  34. WEISKOPF, W. H. Stresses in soils under a foundation. Journal of the Franklin Institute, 239, 445–465 (1945)

    Article  MathSciNet  Google Scholar 

  35. MUKHOPADHYAY, S. and ROYCHOUDHURI, S. K. Magneto-thermoelastic interactions in an infinite isotropic elastic cylinder subjected to a periodic loading. International Journal of Engineering Science, 35, 437–444 (1997)

    Article  Google Scholar 

  36. DATTA, B. K. Some observation on interactions of Rayleigh waves in an elastic solid medium with the gravity field. Revue Romaine des Science Technique de Mecanique Appliquee, 31, 369–374 (1986)

    Google Scholar 

  37. ABD-ALLA, A. M. Propagation of Rayleigh waves in an elastic half-space of orthotropic material. Applied Mathematics and Computation, 99, 61–69 (1999)

    Article  MathSciNet  Google Scholar 

  38. VAVVA, M. G., PROTOPAPPAS, V. C., GERGIDIS, L. N., CHARALAMBOPOULOS, A., FOTIADIS, D. I., and POLYZOS, D. Velocity dispersion of guided waves propagating in a free gradient elastic plate: application to cortical bone. The Journal of the Acoustical Society of America, 125, 3414–3427 (2009)

    Article  Google Scholar 

Download references

Acknowledgements

The authors convey their sincere thanks to Indian Institute of Technology (Indian School of Mines), Dhanbad, for facilitating us with its best facility for research.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Mandi.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mandi, A., Kundu, S., Pati, P. et al. An analytical study on the Rayleigh wave generation in a stratified structure. Appl. Math. Mech.-Engl. Ed. 41, 1039–1054 (2020). https://doi.org/10.1007/s10483-020-2625-9

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10483-020-2625-9

Key words

Chinese Library Classification

2010 Mathematics Subject Classification

Navigation