Skip to main content
Log in

Effects of thermo-magneto-electro nonlinearity characteristics on the stability of functionally graded piezoelectric beam

  • Published:
Applied Mathematics and Mechanics Aims and scope Submit manuscript

Abstract

Due to the increasing interests in using functionally graded piezoelectric materials (FGPMs) in the design of advanced micro-electro-mechanical systems, it is important to understand the stability behaviors of the FGPM beams. In this study, considering the effects of geometrical nonlinearity, temperature, and electricity in the constitutive relations and the effect of the magnetic field on the FGPM beam, the Euler-Bernoulli beam model is adopted, and the nonlinear governing equation of motion is derived via Hamilton’s principle. A perturbation method, which can decompose the deflection into static and dynamic components, is utilized to linearize the nonlinear governing equation. Then, a dynamic stability analysis is carried out, and the approximate analytical solutions for the nonlinear frequency and boundary frequencies of the unstable region are obtained. Numerical examples are performed to verify the present analysis. The effects of the static deflection, the static load factor, the temperature change, and the magnetic field flux on the stability behaviors of the FGPM beam are discussed. From the proposed analytical solutions and numerical results, one can easily and clearly find the effects of various controlled parameters, such as geometric and physical properties of the system, on the mechanical behaviors of structures, and the conclusions are very important and useful for the design of micro-devices.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. CHU, L. L., DUI, G. S., and JU, C. J. Flexoelectric effect on the bending and vibration responses of functionally graded piezoelectric nanobeams based on general modified strain gradient theory. Composite Structures, 186, 39–49 (2018)

    Article  Google Scholar 

  2. SAMEA, P., ESKANDARI, M., and AHMADI, S. F. Displacement potentials for functionally graded piezoelectric solids. Applied Mathematical Modelling, 52, 458–469 (2017)

    Article  MathSciNet  Google Scholar 

  3. CHEN, X. and MEGUID, S. A. Asymmetric bifurcation of thermally and electrically actuated functionally graded material microbeam. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Science, 472(2186), 20150597 (2016)

    Article  Google Scholar 

  4. ASADI, H. and WANG, Q. Dynamic stability analysis of a pressurized FG-CNTRC cylindrical shell interacting with supersonic airflow. Composites Part B: Engineering, 118, 15–25 (2017)

    Article  Google Scholar 

  5. LAL, A., SHEGOKAR, N. L., and SINGH, B. N. Finite element based nonlinear dynamic response of elastically supported piezoelectric functionally graded beam subjected to moving load in thermal environment with random system properties. Applied Mathematical Modelling, 44, 274–295 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  6. YAN, Z. and JIANG, L. Y. Vibration and buckling analysis of a piezoelectric nanoplate considering surface effects and in-plane constraints. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Science, 468(2147), 3458–3475 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  7. SHE, G. L., YUAN, F. G., and REN, Y. R. Thermal buckling and post-buckling analysis of functionally graded beams based on a general higher-order shear deformation theory. Applied Mathematical Modelling, 47, 340–357 (2017)

    Article  MathSciNet  Google Scholar 

  8. DERAYATIFAR, M., TAHANI, M., and MOEENFARD, H. Nonlinear analysis of functionally graded piezoelectric energy harvesters. Composite Structures, 182, 199–208 (2017)

    Article  Google Scholar 

  9. VINYAS, M., SAGAR, P. J., and KATTIMANI, S. Influence of coupled fields on free vibration and static behavior of functionally graded magneto-electro-thermo-elastic plate. Journal of Intelligent Material Systems and Structures, 29(7), 1430–1455 (2018)

    Article  Google Scholar 

  10. SU, Z., JIN, G. Y., and YE, T. G. Electro-mechanical vibration characteristics of functionally graded piezoelectric plates with general boundary conditions. International Journal of Mechanical Sciences, 138, 42–53 (2018)

    Article  Google Scholar 

  11. LI, Y. S., REN, J. H., and FENG, W. J. Bending of sinusoidal functionally graded piezoelectric plate under an in-plane magnetic field. Applied Mathematical Modelling, 47, 63–75 (2017)

    Article  MathSciNet  Google Scholar 

  12. LI, Y. S., FENG, W. J., and CAI, Z. Y. Bending and free vibration of functionally graded piezoelectric beam based on modified strain gradient theory. Composite Structures, 115, 41–50 (2014)

    Article  Google Scholar 

  13. CHORSI, M. T., AZIZI, S., and BAKHTIARI-NEJAD, F. Nonlinear dynamics of a functionally graded piezoelectric micro-resonator in the vicinity of the primary resonance. Journal of Vibration and Control, 23(3), 400–413 (2015)

    Article  MathSciNet  Google Scholar 

  14. ZHOU, S., CAO, J., and LIN, J. Theoretical analysis and experimental verification for improving energy harvesting performance of nonlinear monostable energy harvesters. Nonlinear Dynamics, 86(3), 1599–1611 (2016)

    Article  Google Scholar 

  15. LIN, C. H. and MULIANA, A. Nonlinear electro-mechanical responses of functionally graded piezoelectric beams. Composites Part B: Engineering, 72, 53–64 (2015)

    Article  Google Scholar 

  16. DAQAQ, M. F., MASANA, R., ERTURK, A., and QUINN, D. D. On the role of nonlinearities in vibratory energy harvesting: a critical review and discussion. Applied Mechanics Reviews, 66(4), 040801–040823 (2014)

    Article  Google Scholar 

  17. LI, Y. L., MEGUID, S. A., FU, Y. M., and XU, D. L. Nonlinear analysis of thermally and electrically actuated functionally graded material microbeam. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Science, 470(2162), 20130473 (2014)

    Article  MATH  Google Scholar 

  18. FU, Y. M., WANG, J. Z., and MAO, Y. Q. Nonlinear analysis of buckling, free vibration and dynamic stability for the piezoelectric functionally graded beams in thermal environment. Applied Mathematical Modelling, 36, 4324–4340 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  19. KOMIJANI, M., KIANI, Y., and ESLAMI, M. R. Nonlinear thermoelectrical stability analysis of functionally graded piezoelectric material beams. Journal of Intelligent Material Systems and Structures, 24(4), 399–410 (2012)

    Article  Google Scholar 

  20. KOMIJANI, M., REDDY, J. N., and ESLAMI, M. R. Nonlinear analysis of microstructure-dependent functionally graded piezoelectric material actuators. Journal of the Mechanics and Physics of Solids, 63, 214–227 (2014)

    Article  MathSciNet  Google Scholar 

  21. JIA, X. L., ZHANG, S. M., KE, L. L., YANG, J., and KITIPORNCHAI, S. Thermal effect on the pull-in instability of functionally graded micro-beams subjected to electrical actuation. Composite Structures, 116, 136–146 (2014)

    Article  Google Scholar 

  22. JIA, X. L., KE, L. L., FENG, C. B., YANG, J., and KITIPORNCHAI, S. Size effect on the free vibration of geometrically nonlinear functionally graded micro-beams under electrical actuation and temperature change. Composite Structures, 133, 1137–1148 (2015)

    Article  Google Scholar 

  23. SU, J., KE, L. L., EL-BORGI, S., XIANG, Y., and WANG, Y. S. An effective method for the sliding frictional contact of a conducting cylindrical punch on FGPMs. International Journal of Solids and Structures, 141, 127–136 (2018)

    Article  Google Scholar 

  24. NAYFEH, A. H. Introduction to Perturbation Techniques, John Wiley & Sons, New York (2011)

    MATH  Google Scholar 

  25. YOUNIS, M. I. and NAYFEH, A. H. A study of the nonlinear response of a resonant microbeam to an electric actuation. Nonlinear Dynamics, 31(1), 91–117 (2003)

    Article  MATH  Google Scholar 

  26. ABDEL-RAHMAN, E. M. and NAYFEH, A. H. Secondary resonances of electrically actuated resonant microsensors. Journal of Micromechanics and Microengineering, 13(3), 491 (2003)

    Article  Google Scholar 

  27. OUAKAD, H. M., NAYFEH, A. H., CHOURA, S., and NAJAR, F. Nonlinear feedback controller of a microbeam resonator. Journal of Vibration and Control, 21(9), 1680–1697 (2013)

    Article  MathSciNet  Google Scholar 

  28. HAJJAJ, A. Z., ALCHEIKH, N., and YOUNIS, M. I. The static and dynamic behavior of MEMS arch resonators near veering and the impact of initial shapes. International Journal of Non-Linear Mechanics, 95, 277–286 (2017)

    Article  Google Scholar 

  29. SHAO, S., MASRI, K. M., and YOUNIS, M. I. The effect of time-delayed feedback controller on an electrically actuated resonator. Nonlinear Dynamics, 74(1/2), 257–270 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  30. RUZZICONI, L., YOUNIS, M. I., and LENCI, S. Multistability in an electrically actuated carbon nanotube: a dynamical integrity perspective. Nonlinear Dynamics, 74(3), 533–549 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  31. CARTMELL, M. P., ZIEGLER, S. W., KHANIN, R., and FOREHAND, D. Multiple scales analyses of the dynamics of weakly nonlinear mechanical systems. Applied Mechanics Reviews, 56(5), 455–492 (2003)

    Article  Google Scholar 

  32. MOTAZEDI, N., CARTMELL, M. P., and RONGONG, J. A. Extending the functionality of a symbolic computational dynamic solver by using a novel term-tracking method. Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science, 232(19), 3439–3452 (2017)

    Google Scholar 

  33. WANG, B., DENG, Z. C., OUYANG, H. J., and ZHOU, J. X. Wave propagation analysis in nonlinear curved single-walled carbon nanotubes based on nonlocal elasticity theory. Physica E: Low-Dimensional Systems and Nanostructures, 66, 283–292 (2015)

    Article  Google Scholar 

  34. MOORY-SHIRBANI, M., SEDIGHI, H. M., OUAKAD, H. M., and NAJAR. F. Experimental and mathematical analysis of a piezoelectrically actuated multilayered imperfect microbeam subjected to applied electric potential. Composite Structures, 184, 950–960 (2018)

    Article  Google Scholar 

  35. COTTONE, F., GAMMAITONI, L., VOCCA, H., FERRARI, M., and FERRARI, V. Piezo-electric buckled beams for random vibration energy harvesting. Smart Materials and Structures, 21(3), 035021 (2012)

    Article  Google Scholar 

  36. RAFIEE, M., YANG, J., and KITIPORNCHAI, S. Thermal bifurcation buckling of piezoelectric carbon nanotube reinforced composite beams. Computers & Mathematics with Applications, 66(7), 1147–1160 (2013)

    Article  MATH  Google Scholar 

  37. YAN, Z. and JIANG, L. Y. The vibrational and buckling behaviors of piezoelectric nanobeams with surface effects. Nanotechnology, 22(24), 245703 (2011)

    Article  Google Scholar 

  38. WANG, B., DENG, Z. C., OUYANG, H. J., and XU, X. J. Free vibration of wavy single-walled fluid-conveying carbon nanotubes in multi-physics fields. Applied Mathematical Modelling, 39, 6780–6792 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  39. CHEN, L. W., LIN, C. Y., and WANG, C. C. Dynamic stability analysis and control of a composite beam with piezoelectric layers. Composite Structures, 56(1), 97–109 (2002)

    Article  Google Scholar 

  40. KE, L. L. and WANG, Y. S. Size effect on dynamic stability of functionally graded microbeams based on a modified couple stress theory. Composite Structures, 93(2), 342–350 (2011)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bo Wang.

Additional information

Project supported by the National Natural Science Foundation of China (No. 11802319) and the Na- tional Key Research and Development Program of China (No. 2017YFB1102801)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bi, H., Wang, B., Deng, Z. et al. Effects of thermo-magneto-electro nonlinearity characteristics on the stability of functionally graded piezoelectric beam. Appl. Math. Mech.-Engl. Ed. 41, 313–326 (2020). https://doi.org/10.1007/s10483-020-2570-9

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10483-020-2570-9

Key words

Navigation