Skip to main content
Log in

High-order maximum-principle-preserving and positivity-preserving weighted compact nonlinear schemes for hyperbolic conservation laws

  • Published:
Applied Mathematics and Mechanics Aims and scope Submit manuscript

Abstract

In this paper, the maximum-principle-preserving (MPP) and positivity-preserving (PP) flux limiting technique will be generalized to a class of high-order weighted compact nonlinear schemes (WCNSs) for scalar conservation laws and the compressible Euler systems in both one and two dimensions. The main idea of the present method is to rewrite the scheme in a conservative form, and then define the local limiting parameters via case-by-case discussion. Smooth test problems are presented to demonstrate that the proposed MPP/PP WCNSs incorporating a third-order Runge-Kutta method can attain the desired order of accuracy. Other test problems with strong shocks and high pressure and density ratios are also conducted to testify the performance of the schemes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. DENG, X. G. and ZHANG, H. X. Developing high-order weighted compact nonlinear schemes. Journal of Computational Physics, 165, 22–44 (2000)

    Article  MathSciNet  Google Scholar 

  2. DENG, X. G., LIU, X., MAO, M. L., and ZHANG, H. X. Advances in high-order accurate weighted compact nonlinear schemes. Advances in Mechanics, 37(3), 417–427 (2007)

    Google Scholar 

  3. DENG, X. G. High-order accurate dissipative weighted compact nonlinear schemes. Science in China (Series A), 45(3), 356–370 (2002)

    MathSciNet  MATH  Google Scholar 

  4. NONOMURA, T. and FUJII, K. Effects of difference scheme type in high-order weighted compact nonlinear schemes. Journal of Computational Physics, 228, 3533–3539 (2009)

    Article  Google Scholar 

  5. NONOMURA, T., GOTO, Y., and FUJII, K. Improvements of efficiency in seventh-order weighted compact nonlinear scheme. 6th Asia Workshop on Computational Fluid Dynamics, Tokyo, Japan, AW6-16 (2010)

  6. NONOMURA, T., IIZUKA, N., and FUJII, K. Freestream and vortex preservation properties of high-order WENO and WCNS on curvilinear grids. Computers and Fluids, 39(2), 197–214 (2010)

    Article  MathSciNet  Google Scholar 

  7. DENG, X. G., MAO, M. L., TU, G. H., LIU, H. Y., and ZHANG, H. X. Geometric conservation law and applications to high-order finite difference schemes with stationary grids. Journal of Computational Physics, 230(4), 1100–1115 (2011)

    Article  MathSciNet  Google Scholar 

  8. DENG, X. G., MIN, Y. B., MAO, M. L., LIU, H. Y., TU, G. H., and ZHANG, H. X. Further studies on geometric conservation law and applications to high-order finite difference schemes with stationary grids. Journal of Computational Physics, 239, 90–111 (2013)

    Article  MathSciNet  Google Scholar 

  9. ZHAO, G. Y., SUN, M. B., XIE, S. B., and WANG, H. B. Numerical dissipation control in an adaptive WCNS with a new smoothness indicator. Applied Mathematics and Computation, 330, 239–253 (2018)

    Article  MathSciNet  Google Scholar 

  10. ZHANG, X. X. and SHU, C. W. On maximum-principle-satisfying high order schemes for scalar conservation laws. Journal of Computational Physics, 229, 3091–3120 (2010)

    Article  MathSciNet  Google Scholar 

  11. ZHANG, X. X. and SHU, C. W. Maximum-principle-satisfying and positivity-preserving highorder schemes for conservation laws: survey and new developments. Proceedings of the Royal Society A, 467, 2752–2776 (2011)

    Article  MathSciNet  Google Scholar 

  12. ZHANG, X. X., XIA, Y. H., and SHU, C. W. Maximum-principle-satisfying and positivity-preserving high order discontinuous Galerkin schemes for conservation laws on triangular meshes. Journal of Scientific Computing, 50, 29–62 (2012)

    Article  MathSciNet  Google Scholar 

  13. ZHANG, X. X. and SHU, C. W. On positivity-preserving high order discontinuous Galerkin schemes for compressible Euler equations on rectangular meshes. Journal of Computational Physics, 229, 8918–8934 (2010)

    Article  MathSciNet  Google Scholar 

  14. ZHANG, X. X. and SHU, C. W. Positivity-preserving high order finite difference WENO schemes for compressible Euler equations. Journal of Computational Physics, 231, 2245–2258 (2012)

    Article  MathSciNet  Google Scholar 

  15. XU, Z. F. Parametrized maximum principle preserving flux limiters for high order schemes solving hyperbolic conservation laws: one-dimensional scalar problem. Mathematics of Computation, 83, 2213–2238 (2014)

    Article  MathSciNet  Google Scholar 

  16. XIONG, T., QIU, J. M., and XU, Z. F. A parametrized maximum principle preserving flux limiter for finite difference RK-WENO schemes with applications in incompressible flows. Journal of Computational Physics, 252, 310–331 (2013)

    Article  MathSciNet  Google Scholar 

  17. XIONG, T., QIU, J. M., and XU, Z. F. Parametrized positivity preserving flux limiters for the high order finite difference WENO scheme solving compressible Euler equations. Journal of Scientific Computing, 67, 1066–1088 (2016)

    Article  MathSciNet  Google Scholar 

  18. YANG, P., XIONG, T., QIU, J. M., and XU, Z. F. High order maximum principle preserving finite volume method for convection dominated problems. Journal of Scientific Computing, 67(2), 795–820 (2016)

    Article  MathSciNet  Google Scholar 

  19. CHRISTLIEB, A. J., LIU, Y., TANG, Q., and XU, Z. F. High order parametrized maximum-principle-preserving and positivity-preserving WENO schemes on unstructured meshes. Journal of Computational Physics, 281, 334–351 (2015)

    Article  MathSciNet  Google Scholar 

  20. SHU, C. W. and OSHER, S. Efficient implementation of essentially non-oscillatory shock capturing schemes. Journal of Computational Physics, 77, 439–471 (1988)

    Article  MathSciNet  Google Scholar 

  21. XIONG, T., QIU, J. M., XU, Z. F., and CHRISTLIB, A. High order maximum principle preserving semi-Lagrangian finite difference WENO schemes for the Vlasov equation. Journal of Computational Physics, 273, 618–639 (2014)

    Article  MathSciNet  Google Scholar 

  22. GUO, Y., XIONG, T., and SHI, Y. A positivity preserving high order finite volume compact-WENO scheme for compressible Euler equations. Journal of Computational Physics, 274, 505–523 (2014)

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lingyan Tang.

Additional information

Project supported by the National Natural Science Foundation of China (No. 11571366) and the Basic Research Foundation of National Numerical Wind Tunnel Project (No. NNW2018-ZT4A08)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tang, L., Song, S. & Zhang, H. High-order maximum-principle-preserving and positivity-preserving weighted compact nonlinear schemes for hyperbolic conservation laws. Appl. Math. Mech.-Engl. Ed. 41, 173–192 (2020). https://doi.org/10.1007/s10483-020-2554-8

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10483-020-2554-8

Key words

Chinese Library Classification

2010 Mathematics Subject Classification

Navigation