Skip to main content
Log in

Asymptotical consensus of fractional-order multi-agent systems with current and delay states

  • Published:
Applied Mathematics and Mechanics Aims and scope Submit manuscript

Abstract

In this paper, we study some new fractional-order multi-agent systems with current and delay states (FMASCD). Using the generalized Nyquist’s stability criterion and Gerschgorin’s circle theorem, we obtain the bounded input-bounded output (BIBO) stability and asymptotical consensus of the FMASCD under mild conditions. Moreover, we give some numerical examples to illustrate our main results.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. REYNOLDS, C. W. Flocks, herds and schools: a distributed behavioral model. Computer Graphics, 21(4), 25–34 (1987)

    Article  Google Scholar 

  2. VICSEK, T., CZIROOK, A., BEN-JACOB, E., COHEN, O., and SHOCHET, I. Novel type of phase transition in a system of self-driven paticles. Physical Review Letters, 75(6), 1226–1229 (1995)

    Article  MathSciNet  Google Scholar 

  3. JADBABAIE, A., LIN, J., and MORSE, A. S. Coordination of groups of mobile autonomous agents using nearest neighbor rules. IEEE Transactions on Automatic Control, 48(6), 988–1001 (2003)

    Article  MathSciNet  Google Scholar 

  4. OLFATI-SABER, R. and MURRAY, R. M. Consensus problems in networks of agents with switching topology and time-delays. Ieee Transactions On Automatic Control, 49(9), 1520–1533 (2004)

    Article  MathSciNet  Google Scholar 

  5. LIN, Z., FRANCIS, B., and MAGGIORE, M. Necessary and sufficient graphical conditional for formation control of unicycles. IEEE Transactions on Automatic Control, 50(1), 121–127 (2005)

    Article  MathSciNet  Google Scholar 

  6. OLFATI-SABER, R., FAX, J. A., and MURRAY, R. M. Consensus and cooperation in networked multi-agent systems. IEEE Transactions on Automatic Control, 95(1), 215–233 (2007)

    MATH  Google Scholar 

  7. REN, W. and ATKINS, E. Distributed multi-vehicle coordinated control via local information exchange. International Journal of Robust and Nonlinear Control, 17(10/11), 1002–1033 (2007)

    Article  MathSciNet  Google Scholar 

  8. REN, W. On consensus algorithms for double-integrator dynamics. IEEE Transactions on Automatic Control, 53(6), 1503–1509 (2008)

    Article  MathSciNet  Google Scholar 

  9. YU, W. W., CHEN, G. R., WANG, Z. D., and YANG, W. Distributed consensus filtering in sensor networks. IEEE Transactions on Systems, Man, and Cybernetics—Part B: Cybernetics, 39, 1568–1577 (2009)

    Article  Google Scholar 

  10. PODLUBNY, I. Fractional Differential Equations, Academic Press, New York (1999)

    MATH  Google Scholar 

  11. HILFER, R. Applications of Fractional Calculus in Physics, World Scientific, Singapore (2000)

    Book  Google Scholar 

  12. KOELLER, R. Toward an equation of state for solid materials with memory by use of the half-order derivative. Acta Mechanica, 191(3/4), 125–133 (2007)

    Article  Google Scholar 

  13. PENG, Z., WANG, D., WANG, H., and WANG, W. Distributed coodinated tracking of multiple autonomous underwater vehicles. Nonlinear Dynamics, 78, 1261–1276 (2014)

    Article  Google Scholar 

  14. ZHAO, W. J., YANG, S. P., WEN, G. L., and REN, X. H. Fractional-order visco-plastic constitutive model for uniaxial ratcheting behaviors. Applied Mathematics and Mechanics (English Edition), 40(1), 49–62 (2019) https://doi.org/10.1007/s10483-019-2413-8

    Article  MathSciNet  Google Scholar 

  15. CERVIN, A. and HENNINGSSON, T. Scheduling of event-triggered controllers on a shared network. Proceedings of the 47th IEEE Conference on Decision and Control, IEEE, Piscataway, NJ, 3601–3606 (2008)

    Google Scholar 

  16. CAO, Y., LI, Y., REN, W., and CHEN, Y. Distributed coordination of networked fractional-order systems. IEEE Transactions on Systems, Man, and Cybernetics—Part B: Cybernetics, 40(2), 362–370 (2010)

    Article  Google Scholar 

  17. CAO, Y. and REN, W. Distributed formation control for fractional-order systems: dynamic interaction and absolute/relative damping. Systems and Control Letters, 59(3/4), 233–240 (2010)

    Article  MathSciNet  Google Scholar 

  18. SHEN, J., CAO, J., and LU, J. Consensus of fractional-order systems with non-uniform input and communication delays. Proceedings of the Institution of Mechanical Engineers, Part I: Journal of Systems and Control Engineering, 226(12), 271–283 (2012)

    Google Scholar 

  19. SHEN, J. and CAO, J. Necessary and sufficient conditions for consensus of delayed fractional-order systems. Asian Journal of Control, 6(14), 1690–1697 (2012)

    Article  MathSciNet  Google Scholar 

  20. BAI, J., WEN, G., RAHMANI, A., and YU, Y. Distributed formation control of fractional-order multi-agent systems with absolute damping and communication delay. International Journal of Systems Science, 46(13), 1–13 (2015)

    Article  MathSciNet  Google Scholar 

  21. BAI, J., WEN, G., RAHMANI, A., CHU, X., and YU, Y. Consensus with a reference state for fractional-order multi-agent systems. International Journal of Systems Science, 47(1), 222–234 (2015)

    Article  MathSciNet  Google Scholar 

  22. SONG, C., CAO, J., and LIU, Y. Robust consensus of fractional-order multi-agent systems with positive real uncertainty vas second-order neighbors information. Neurocomputing, 165, 293–299 (2016)

    Article  Google Scholar 

  23. CAO, Y. and REN, W. Multi-agent consensus using both current and outdated states with fixed and undirected interaction. Journal of Intelligent and Robotic Systems, 58, 95–106 (2010)

    Article  Google Scholar 

  24. HE, Y. and WANG, X. Weighted consensus of multi-agent systems using both time-delay state and current state. Proceedings of the 35th Chinese Control Conference, IEEE, Piscataway, NJ, 8125–8128 (2016)

    Google Scholar 

  25. WANG, J. and LI, Y. Frequency domain stability criteria for fractional-order control systems. Journal of Chongqing University (English Edition), 5(1), 30–35 (2006)

    Google Scholar 

  26. GERSCHGORIN, S. Über die abgrenzung der eigenwerte einer matrix. Bulletin de l’Académie des Sciences de l’URSS, 6, 749–754 (1931)

    MATH  Google Scholar 

  27. DENG, W. H., LI, C. P., and LYU, J. H. Stability analysis of linear fractional differential system with multiple time delays. Nonlinear Dynamics, 48, 409–416 (2007)

    Article  MathSciNet  Google Scholar 

  28. MATIGNON, D. Stability result for fractional differential equations with applications to control processing. IMACS-SMC Proceedings, 7, 963–968 (1996)

    Google Scholar 

Download references

Acknowledgements

The authors are grateful to the editors and reviewers whose helpful comments and suggestions have led to much improvement of the paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nanjing Huang.

Additional information

Citation: WANG, X. H., LI, X. S., HUANG, N. J., and O’REGAN, D. Asymptotical consensus of fractional-order multi-agent systems with current and delay states. Applied Mathematics and Mechanics (English Edition), 40(11), 1677–1694 (2019) https://doi.org/10.1007/s10483-019-2533-8

Project supported by the National Natural Science Foundation of China (Nos. 11471230 and 11671282)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, X., Li, X., Huang, N. et al. Asymptotical consensus of fractional-order multi-agent systems with current and delay states. Appl. Math. Mech.-Engl. Ed. 40, 1677–1694 (2019). https://doi.org/10.1007/s10483-019-2533-8

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10483-019-2533-8

Key words

Chinese Library Classification

2010 Mathematics Subject Classification

Navigation