Skip to main content
Log in

Multi-relaxation-time lattice Boltzmann simulations of lid driven flows using graphics processing unit

  • Published:
Applied Mathematics and Mechanics Aims and scope Submit manuscript

Abstract

Large eddy simulation (LES) using the Smagorinsky eddy viscosity model is added to the two-dimensional nine velocity components (D2Q9) lattice Boltzmann equation (LBE) with multi-relaxation-time (MRT) to simulate incompressible turbulent cavity flows with the Reynolds numbers up to 1 × 107. To improve the computation efficiency of LBM on the numerical simulations of turbulent flows, the massively parallel computing power from a graphic processing unit (GPU) with a computing unified device architecture (CUDA) is introduced into the MRT-LBE-LES model. The model performs well, compared with the results from others, with an increase of 76 times in computation efficiency. It appears that the higher the Reynolds numbers is, the smaller the Smagorinsky constant should be, if the lattice number is fixed. Also, for a selected high Reynolds number and a selected proper Smagorinsky constant, there is a minimum requirement for the lattice number so that the Smagorinsky eddy viscosity will not be excessively large.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. McNamara, G. R. and Zanetti, G. Use of the Boltzmann equation to simulate lattice-gas automata. Physical Review Letters, 61, 2332–2335 (1988)

    Article  Google Scholar 

  2. Chen, H. D., Chen, S. Y., and Matthaeus, W. H. Recovery of the Navier-Stokes equations using a lattice-gas Boltzmann method. Physical Review A, 45, 5339–5342 (1992)

    Article  Google Scholar 

  3. Qian, Y. H., d’Humières, D., and Lallemand, P. Lattice BGK models for Navier-Stokes equation. Europhysics Letters, 17, 479–484 (1992)

    Article  MATH  Google Scholar 

  4. Shan, X. W. and Chen, H. D. Lattice Boltzmann model for simulating flows with multiple phases and components. Physical Review E, 47, 1815–1820 (1993)

    Article  Google Scholar 

  5. Dou, Z., Zhou, Z. F., Huang, Y., and Wu, W. Numerical study of non-aqueous phase liquid transport in a single filled fracture by lattice Boltzmann method. Journal of Hydrodynamics, 24, 130–137 (2012)

    Article  Google Scholar 

  6. Guo, Z. L. and Zhao, T. S. Lattice Boltzmann model for incompressible flows though porous media. Physical Review E, 66, 036304 (2002)

    Article  Google Scholar 

  7. Hou, S. L., Sterling, J., Chen, S. Y., and Doolen, G. D. A lattice Boltzmann subgrid model for high Reynolds number flows. Fields Institute Communications, 6, 151–166 (1996)

    MathSciNet  MATH  Google Scholar 

  8. Yu, H. D., Girimaji, S. S., and Luo, L. S. DNS and LES of decaying isotropic turbulence with and without frame rotation using lattice Boltzmann method. Journal of Computational Physics, 209, 599–616 (2005)

    Article  MATH  Google Scholar 

  9. Fernandino, M., Beronov, K., and Ytrehus, T. Large eddy simulation of turbulent open duct flow using a lattice Boltzmann approach. Mathematics and Computers in Simulation, 79, 1520–1526 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  10. Krafczyk, M., Tölke, J., and Luo, L. S. Large-eddy simulations with a multiple-relaxation-time LBE model. International Journal of Modern Physics B, 17, 33–39 (2003)

    Article  Google Scholar 

  11. Yu, H. D., Luo, L. S., and Girimaji, S. S. LES of turbulent square jet flow using an MRT lattice Boltzmann model. Computers and Fluids, 35, 957–965 (2006)

    Article  MATH  Google Scholar 

  12. Premnath, K. N. and Pattison, M. J. Generalized lattice Boltzmann equation with forcing term for computation of wall-bounded turbulent flows. Physical Review E, 79, 026703 (2009)

    Article  MathSciNet  Google Scholar 

  13. Sukop, M. C. and Thorne, D. T. Lattice Boltzmann Modeling: an Introduction for Geoscientists and Engineers, Springer, Berlin (2006)

    Google Scholar 

  14. d’Humières, D. Generalized lattice Boltzmann equations. Rarefied Gas Dynamics: Theory and Simulations (eds. Shizgal, B. D. and Weaver, D. P.), Progress in Astronautics and Aeronautics, American Instiute of Aeronautics and Astronauics, Reston (1992)

    Google Scholar 

  15. Lallemand, P. and Luo, L. S. Theory of the lattice Boltzmann method: dispersion, dissipation, isotropy, Galilean invariance, and stability. Physical Review E, 61, 6546–6562 (2000)

    Article  MathSciNet  Google Scholar 

  16. d’Humières, D., Ginzburg, I., Krafczyk, M., Lallemand, P., and Luo, L. S. Multiple-relaxation-time lattice Boltzmann models in three dimensions. Philosophical Transactions of the Royal Society A, 360, 437–451 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  17. Chai, Z. H., Shi, B. C., and Zheng, L. Simulating high Reynolds number flow in two-dimensional lid-driven cavity by multi-relaxation-time lattice Boltzmann method. Chinese Physics, 15, 1855–1863 (2006)

    Article  Google Scholar 

  18. Hou, S. L., Chen, S. Y., Doolen, G. D., and Cogley, A. C. Simulation of cavity flow by the lattice Boltzmann method. Journal of Computational Physics, 118, 329–347 (1995)

    Article  MATH  Google Scholar 

  19. Li, C. G., Maa, J. P. Y., and Kang, H. G. Solving generalized lattice Boltzmann model for 3-D cavity flows using CUDA-GPU. Science China Physics, Mechanics and Astronomy, 55, 1894–1904 (2012)

    Article  Google Scholar 

  20. Li, W., Wei, X. M., and Kaufman, A. Implementing lattice Boltzmann computation on graphics hardware. Visual Computer, 19, 444–456 (2003)

    Article  Google Scholar 

  21. NVIDIA Corporation. NVIDIA CUDA 4.1 Programming Guide (2011)

  22. Kirk, D. B. and Hwu, W. W. Programming Massively Parallel Processors: a Hands-on Approach, Morgan Kaufmann, Burlington (2010)

    Google Scholar 

  23. Tölke, J. Implementation of lattice Boltzmann kernel using the compute unified device architecture developed by NVIDIA. Computing and Visualization in Science, 13, 29–39 (2009)

    Article  Google Scholar 

  24. Tölke, J. and Krafczyk, M. TeraFLOP computing on a desktop PC with GPUs for 3D CFD. International Journal of Computational Fluid Dynamics, 22, 443–456 (2008)

    Article  MATH  Google Scholar 

  25. Kuznik, F., Obrecht, C., Rusaouen, G., and Roux, J. LBM based flow simulation using GPU computing processor. Computers and Mathematics with Applications, 59, 2380–2392 (2010)

    Article  MATH  Google Scholar 

  26. Pope, S. Turbulent Flows, Cambridge University Press, New York (2000)

    Book  MATH  Google Scholar 

  27. Smagorinsky, J. General circulation experiments with the primitive equations: I, the basic equations. Monthly Weather Review, 91, 99–164 (1963)

    Article  Google Scholar 

  28. Ghia, U., Ghia, K. N., and Shin, C. T. High-Re solutions for incompressible flow using the Navier-Stokes equations and a multigrid method. Journal of Computational Physics, 48, 387–411 (1982)

    Article  MATH  Google Scholar 

  29. Erturk, E., Corke, T. C., and Gökçöl, C. Numerical solutions of 2-D steady incompressible driven cavity flow at high Reynolds numbers. International Journal for Numerical Methods in Fluids, 48, 747–774 (2005)

    Article  MATH  Google Scholar 

  30. Du, R., Shi, B. C., and Chen, X. W. Multi-relaxation-time lattice Boltzmann model for incompressible flow. Physical Letters A, 359, 564–572 (2006)

    Article  MATH  Google Scholar 

  31. Erturk, E. Discussions on driven cavity flow. International Journal for Numerical Methods in Fluids, 60, 275–294 (2009)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

The authors would like to thank Prof. Lishi LUO for providing the initial MRT-LBE CPU code. This work is supported by College of William and Mary, Virginia Institute of Marine Science for the study environment.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chenggong Li.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, C., Maa, J.P.Y. Multi-relaxation-time lattice Boltzmann simulations of lid driven flows using graphics processing unit. Appl. Math. Mech.-Engl. Ed. 38, 707–722 (2017). https://doi.org/10.1007/s10483-017-2194-9

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10483-017-2194-9

Key words

Chinese Library Classification

2010 Mathematics Subject Classification

Navigation