Skip to main content
Log in

General investigation for longitudinal wave propagation under magnetic field effect via nonlocal elasticity

  • Published:
Applied Mathematics and Mechanics Aims and scope Submit manuscript

Abstract

In this paper, the propagation of longitudinal stress waves under a longitudinal magnetic field is addressed using a unified nonlocal elasticity model with two scale coefficients. The analysis of wave motion is mainly based on the Love rod model. The effect of shear is also taken into account in the framework of Bishop’s correction. This analysis shows that the classical theory is not sufficient for this subject. However, this unified nonlocal elasticity model solely used in the present study reflects in a manner fairly realistic for the effect of the longitudinal magnetic field on the longitudinal wave propagation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Narendar, S. and Gopalkrishnan, S. Nonlocal scale effects on ultrasonic wave characteristics of nanorods. Physica E-Low-Dimensional Systems and Nanostructures, 42, 1601–1604 (2010)

    Article  Google Scholar 

  2. Narendar, S. Ultrasonic wave characteristics of nanorods via nonlocal strain gradient models. Journal of Applied Physics, 107, 084312 (2010)

    Article  Google Scholar 

  3. Narendar, S. and Gopalkrishnan, S. Axial wave propagation in coupled nanorod system with nonlocal small scale effects. Composites Part B-Engineering, 42, 2013–2023 (2011)

    Article  Google Scholar 

  4. Murmu, T. and Adhikari, S. Nonlocal effects in the longitudinal vibration of double-nanorod systems. Physica E-Low-Dimensional Systems and Nanostructures, 43, 415–422 (2010)

    Article  Google Scholar 

  5. Li, T. S. and Lin, M. F. Transport properties of finite carbon nanotubes under electric and magnetic fields. Journal of Physica Condensed Matter, 18, 10693–10703 (2006)

    Article  Google Scholar 

  6. Rosales, L., Pacheco, M., Barticevic, Z., Rocha, C. G., and Latgé, A. Magnetic-field effects on transport in carbon nanotube junctions. Physical Review B, 75, 165401 (2007)

    Google Scholar 

  7. Belluci, S., Gonzalez, J., Guinea, F., Onorato, P., and Perfetto, E. Magnetic field effects in carbon nanotubes. Journal of Physica Condensed Matter, 19, 395017 (2007)

    Article  Google Scholar 

  8. Chen, J. H., Zhang, J., and Han, R. S. First principles calculation of transport property in nanodevices under an external magnetic field. Chinese Physics B, 17, 2208–2216 (2008)

    Article  Google Scholar 

  9. Kibalchenko, M., Payne, M. C., and Yates, J. R. Magnetic response of single-walled carbon nanotubes induced by an external magnetic field. ACS Nano, 5, 537–545 (2011)

    Article  Google Scholar 

  10. Roche, S. and Saito, R. Effects of magnetic field and disorder on the electronic properties of carbon nanotubes. Physical Review B, 59, 5242–5246 (1999)

    Article  Google Scholar 

  11. Lobo, T., Figureira, M. S., Latgé, A., and Ferreira, M. S. Magnetic-field effects on the electronic transport properties of a carbon nanotube with a side-coupled magnetic impurity. Physica BCondensed Matter, 384, 113–115 (2006)

    Article  Google Scholar 

  12. Zhang, Z. H., Guo, W. L., and Guo, Y. F. The effects of axial magnetic field on electronic properties of carbon nanotubes. Acta Physica Sinica, 55, 6526–6531 (2006)

    Google Scholar 

  13. Sebastiani, D. and Kudin, K. N. Electronic response properties of carbon nanotubes in magnetic fields. ACS Nano, 2, 661–668 (2008)

    Article  Google Scholar 

  14. Kibis, O. V. Electronic phenomena in chiral carbon nanotubes in the presence of a magnetic field. Physica E-Low-Dimensional Systems and Nanostructures, 12, 741–744 (2002)

    Article  Google Scholar 

  15. Wang, H., Dong, K., Men, F., Yan, Y. J., and Wang, X. Influences of longitudinal magnetic field on wave propagation in carbon nanotubes embedded in elastic matrix. Applied Mathematical Modelling, 34, 878–889 (2010)

    Article  MATH  MathSciNet  Google Scholar 

  16. Narendar, S., Gupta, S. S., and Gopalakrishnan, S. Longitudinal magnetic field effect on nonlocal ultrasonic vibration analysis of single-walled carbon nanotubes based on wave propagation approach. Advance Science Letters, 4, 3382–3389 (2011)

    Article  Google Scholar 

  17. Li, S., Xie, H. J., and Wang, X. Dynamic characteristics of multi-walled carbon nanotubes under a transverse magnetic field. Bulletin Material Science, 34, 45–52 (2011)

    Article  Google Scholar 

  18. Narendar, S., Gupta, S. S., and Gopalakrishnan, S. Wave propagation in single-walled carbon nanotube under longitudinal magnetic field using nonlocal Euler-Bernoulli beam theory. Applied Mathematical Modelling, 36, 4529–4538 (2012)

    Article  MATH  MathSciNet  Google Scholar 

  19. Wang, X., Shen, J. X., Liu, Y., Shen, G. G., and Lu, G. Rigorous van der Waals effect on vibration characteristics of multi-walled carbon nanotubes under a transverse magnetic field. Applied Mathematical Modelling, 36, 648–656 (2012)

    Article  MATH  MathSciNet  Google Scholar 

  20. Kiani, K. Transverse wave propagation in elastically confined single-walled carbon nanotubes subjected to longitudinal magnetic fields using nonlocal elasticity models. Physica E-Low-Dimensional Systems and Nanostructures, 45, 86–96 (2012)

    Article  Google Scholar 

  21. Kiani, K. Magneto-elastio-dynamic analysis of an elastically confined conducting nanowire due to an axial magnetic shock. Physics Letters A, 376, 1679–1685 (2012)

    Article  Google Scholar 

  22. Murmu, T., McCarthy, M. A., and Adhikari, S. Nonlocal elasticity based magnetic field affected vibration response of double single-walled carbon nanotube systems. Journal of Applied Physics, 111, 113511 (2012)

    Article  Google Scholar 

  23. Wang, B., Deng, Z., Ouyang, H., and Zhang, K. Wave characteristics of single-walled fluidconveying carbon nano-tubes subjected to multi-physical fields. Physica E-Low-Dimensional Systems and Nanostructures, 52, 97–105 (2013)

    Article  Google Scholar 

  24. Kiani, K. Vibration and instability of single-walled carbon nanotube in a three-dimensional magnetic field. Journal of Physical and Chemical Solids, 75, 15–22 (2014)

    Article  Google Scholar 

  25. Rao, S. R. Vibration of Continuous Systems, John Wiley & Sons, New Jersey (2007)

    Google Scholar 

  26. Love, A. E. H. A Treatise on the Mathematical Theory of Elasticity, Dover Publications, New York (1944)

    MATH  Google Scholar 

  27. Eringen, A. C. Nonlocal Continuum Field Theories, Springer-Verlag, New York (2002)

    MATH  Google Scholar 

  28. Altan, B. and Aifantis, E. C. On the structure of the mode III crack-tip in gradient elasticity. Scripta Metallurgica et Materialia, 26, 319–324 (1992)

    Article  Google Scholar 

  29. Gutkin, M. Y. and Aifantis, E. C. Screw dislocation in gradient elasticity. Scripta Materialia, 36, 129–135 (1996)

    Article  Google Scholar 

  30. Gutkin, M. Y. and Aifantis, E. C. Dislocations and disclinations in gradient elasticity. Physica Status Solidi B-Basic Solid State Physics, 214, 245–284 (1999)

    Article  Google Scholar 

  31. Gutkin, M. Y. and Aifantis, E. C. Dislocations in the theory of gradient elasticity. Scripta Materialia, 40, 559–566 (1999)

    Article  Google Scholar 

  32. Aifantis, E. C. Update on a class of gradient theories. Mechanics of Materials, 35, 259–280 (2003)

    Article  Google Scholar 

  33. Song, J., Shen, J., and Li, X. F. Effects of initial axial stress on wave propagating in carbon nanotubes using a generalized nonlocal model. Computational Material Science, 49, 518–523 (2010)

    Article  Google Scholar 

  34. Shen, J., Wu, J. X., Song, J., Li, X. F., and Lee, K. Y. Flexural waves of carbon nanotubes based on generalized gradient elasticity. Physica Status Solidi B-Basic Solid State Physics, 249, 50–57 (2012)

    Article  Google Scholar 

  35. Challamel, N., Rakotomanana, L., and Marrec, L. L. A dispersive wave equation using nonlocal elasticity. Comptes Rendus Mecanique, 337, 591–595 (2009)

    Article  Google Scholar 

  36. Kecs, W. W. A generalized equation of longitudinal vibrations for elastic rods: the solution and uniqueness of a boundary initial value problem. European Journal of Mechanics A-Solids, 13, 135–145 (1994)

    MATH  MathSciNet  Google Scholar 

  37. [37] Güven, U. The investigation of the nonlocal longitudinal stress waves with modified couple stress theory. Acta Mechanica, 221, 321–325 (2011)

    Article  MATH  Google Scholar 

  38. Güven, U. A more general investigation for the longitudinal stress waves in microrods with initial stress. Acta Mechanica, 223, 2065–2074 (2012)

    Article  MATH  MathSciNet  Google Scholar 

  39. Güven, U. Love-Bishop rod solution based on strain gradient elasticity theory. Comptes Rendus Mecanique, 342, 8–16 (2014)

    Article  Google Scholar 

  40. Güven, U. A generalized nonlocal elasticity solution for the propagation of longitudinal stress waves in bars. European Journal of Mechanics A-Solids, 45, 75–79 (2014)

    Article  MathSciNet  Google Scholar 

  41. Güven, U. Two mode Mindlin-Herrmann rod solutions based on strain gradient elasticity theory. Zeitschrift für Angewandte Mathematik und Mechanik, 94, 1011–1016 (2014)

    Article  MATH  Google Scholar 

  42. Narendar, S. Tera hertz wave propagation in uniform nanorods: a nonlocal continuum mechanics formulation including the effect of lateral inertia. Physica E-Low-Dimensional Systems and Nanostructures, 43, 1015–1020 (2011)

    Article  Google Scholar 

  43. Wang, Y. Z., Li, F. M., and Kishimoto, K. Scale effects on the longitudinal wave propagation in nanoplates. Physica E-Low-Dimensional Systems and Nanostructures, 42, 1356–1360 (2010)

    Article  Google Scholar 

  44. Sanchez-Portal, D., Artacho, E., and Soler, J. M. Ab initio structural, elastic, and vibrational properties of carbon nanotubes. Physical Review B, 59, 12678–12688 (1999)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to U. Güven.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Güven, U. General investigation for longitudinal wave propagation under magnetic field effect via nonlocal elasticity. Appl. Math. Mech.-Engl. Ed. 36, 1305–1318 (2015). https://doi.org/10.1007/s10483-015-1985-9

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10483-015-1985-9

Keywords

Chinese Library Classification

2010 Mathematics Subject Classification

Navigation