Skip to main content
Log in

First-order optimality condition of basis pursuit denoise problem

  • Published:
Applied Mathematics and Mechanics Aims and scope Submit manuscript

Abstract

A new first-order optimality condition for the basis pursuit denoise (BPDN) problem is derived. This condition provides a new approach to choose the penalty parameters adaptively for a fixed point iteration algorithm. Meanwhile, the result is extended to matrix completion which is a new field on the heel of the compressed sensing. The numerical experiments of sparse vector recovery and low-rank matrix completion show validity of the theoretic results.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Johnson, B. R., Modisette, J. P., Nordlander, P., and Kinsey, J. L. Wavelet bases in eigenvalue problems in quantum mechanics. APS March Meeting Abstracts, 1, 1903–1903 (1996)

    Google Scholar 

  2. Donoho, D. L. and Elad, M. On the stability of the basis pursuit in the presence of noise. Signal Processing, 86(3), 511–532 (2006)

    Article  MATH  Google Scholar 

  3. Chen, S. S., Donoho, D. L., and Saunders, M. A. Atomic decomposition by basis pursuit. SIAM Journal on Scientific Computing, 20(1), 33–61 (1998)

    Article  MathSciNet  Google Scholar 

  4. Candès, E. J., Romberg, J. K., and Tao, T. Stable signal recovery from incomplete and inaccurate measurements. Communications on Pure and Applied Mathematics, 59(8), 1207–1223 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  5. Candès, E. J., Romberg, J., and Tao, T. Robust uncertainty principles: exact signal reconstruction from highly incomplete frequency information. IEEE Transactions on Information Theory, 52(2), 489–509 (2006)

    Article  MATH  Google Scholar 

  6. Donoho, D. L. Compressed sensing. IEEE Transactions on Information Theory, 52(4), 1289–1306 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  7. Yin, W., Osher, S., Goldfarb, D., and Darbon, J. Bregman iterative algorithms for l 1-minimization with applications to compressed sensing. SIAM Journal on Imaging Sciences, 1(1), 143–168 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  8. Cai, J. F., Osher, S., and Shen, Z. Linearized Bregman iterations for compressed sensing. Mathematics of Computation, 78(267), 1515–1536 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  9. Osher, S., Mao, Y., Dong, B., and Yin, W. Fast linearized Bregman iteration for compressive sensing and sparse denoising. Communications in Mathematical Sciences, 8(1), 93–111 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  10. Hale, E. T., Yin, W., and Zhang, Y. Fixed-point continuation for l 1-minimization: methodology and convergence. SIAM Journal on Optimization, 19(3), 1107–1130 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  11. Candès, E. J. and Plan, Y. Matrix completion with noise. Proceedings of the IEEE, 98(6), 925–936 (2010)

    Article  Google Scholar 

  12. Candès, E. J. and Recht, B. Exact matrix completion via convex optimization. Foundations of Computational Mathematics, 9(6), 717–772 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  13. Candès, E. J. and Tao, T. The power of convex relaxation: near-optimal matrix completion. IEEE Transactions on Information Theory, 56(5), 2053–2080 (2010)

    Article  Google Scholar 

  14. Zhang, H., Cheng, L., and Zhu, W. Nuclear norm regularization with a low-rank constraint for matrix completion. Inverse Problems, 26(11), 115009 (2010)

    Article  MathSciNet  Google Scholar 

  15. Zhang, H., Cheng, L. Z., and Zhu, W. A lower bound guaranteeing exact matrix completion via singular value thresholding algorithm. Applied and Computational Harmonic Analysis, 31(3), 454–459 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  16. Van Den Berg, E. and Friedlander, M. P. Probing the Pareto frontier for basis pursuit solutions. SIAM Journal on Scientific Computing, 31(2), 890–912 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  17. Van Den Berg, E. Convex Optimization for Generalized Sparse Recovery, Ph. D. dissertation, the University of British Columbia (2009)

    Google Scholar 

  18. Bertsekas, D. P., Nedić, A., and Ozdaglar, A. E. Convex Analysis and Optimization, Athena Scientific, Belmont (2003)

    MATH  Google Scholar 

  19. Cai, J. F., Candès, E. J., and Shen, Z. A singular value thresholding algorithm for matrix completion. SIAM Journal on Optimization, 20(4), 1956–1982 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  20. Ma, S., Goldfarb, D., and Chen, L. Fixed point and Bregman iterative methods for matrix rank minimization. Mathematical Programming, 128(1–2), 321–353 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  21. Zhang, H. and Cheng, L. Z. Projected Landweber iteration for matrix completion. Journal of Computational and Applied Mathematics, 235(3), 593–601 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  22. Hale, E. T., Yin, W. T., and Zhang, Y. A Fixed-Point Continuation Method for l 1-Regularized Minimization with Applications to Compressed Sensing, CAAM Technical Report, TR07-07, Rice University, Texas (2007)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Li-zhi Cheng  (成礼智).

Additional information

Project supported by the National Natural Science Foundation of China (No. 61271014), the Specialized Research Fund for the Doctoral Program of Higher Education (No. 20124301110003), and the Graduated Students Innovation Fund of Hunan Province (No.CX2012B238)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhu, W., Shu, S. & Cheng, Lz. First-order optimality condition of basis pursuit denoise problem. Appl. Math. Mech.-Engl. Ed. 35, 1345–1352 (2014). https://doi.org/10.1007/s10483-014-1860-9

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10483-014-1860-9

Key words

Chinese Library Classification

2010 Mathematics Subject Classification

Navigation