Skip to main content
Log in

Swirling-strength based large eddy simulation of turbulent flow around single square cylinder at low Reynolds numbers

  • Published:
Applied Mathematics and Mechanics Aims and scope Submit manuscript

Abstract

In view of the fact that large scale vortices play the substantial role of momentum transport in turbulent flows, large eddy simulation (LES) is considered as a better simulation model. However, the sub-grid scale (SGS) models reported so far have not ascertained under what flow conditions the LES can lapse into the direct numerical simulation. To overcome this discrepancy, this paper develops a swirling strength based the SGS model to properly model the turbulence intermittency, with the primary characteristics that when the local swirling strength is zero, the local sub-grid viscosity will be vanished. In this paper, the model is used to investigate the flow characteristics of zero-incident incompressible turbulent flows around a single square cylinder (SC) at a low Reynolds number range Re ∈ [103, 104]. The flow characteristics investigated include the Reynolds number dependence of lift and drag coefficients, the distributions of time-spanwise averaged variables such as the sub-grid viscosity and the logarithm of Kolmogorov micro-scale to the base of 10 at Re = 2 500 and 104, the contours of spanwise and streamwise vorticity components at t = 170. It is revealed that the peak value of sub-grid viscosity ratio and its root mean square (RMS) values grow with the Reynolds number. The dissipation rate of turbulent kinetic energy is larger near the SC solid walls. The instantaneous factor of swirling strength intermittency (FSI) exhibits some laminated structure involved with vortex shedding.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

A :

matrix expression of velocity gradient u

a ij :

element of matrix A

B :

spanwise length of square cylinder (m)

C μ :

artificially defined constant in Eq. (1)

d :

cross-sectional side length of SC (m)

f I :

factor of swirling strength intermittency

k :

turbulent kinetic energy

p :

pressure (Pa)

Re :

Reynolds number (du in/ν)

Re 3 :

representative for Re (Re/103)

t :

time(s)

u :

velocity vector (m/s) (u, v, w)

u in :

incoming flow speed (m/s)

x :

coordinate vector (m) (x, y, z)

x u , x d :

parameters for computational-domain (m)

y b , y d :

parameters for computational-domain (m)

δ :

harmonically averaged grid interval (m)

δ i :

gridintervalinx i direction (m)

Δ t :

timestep(s)

ɛ :

dissipation rate of turbulent kinetic energy

∈:

infinitesimal for accuracy representation

λ ci :

swirling strength (1/s)

λ :

eigenvalue of u (λ cr + ci )

ρ :

fluid density (kg/m3)

ν :

fluid kinematic viscosity (m2/s)

ν s :

sub-grid viscosity (m2/s)

ν sr :

viscosity ratio (ν s/ν)

(ν sr)pm :

time-averaged (ν sr)peak

(ν sr)′p :

root mean square of(ν sr)peak

(ν sr)peak :

peak value of ν sr

References

  1. Zhu, Z. J. Numerical Study of Flows Around Rectangular Cylinders (in Chinese), Ph. D. dissertation, Shanghai Jiaotong University, 1–22 (1990)

    Google Scholar 

  2. Vickery, B. J. Fluctuating lift and drag on a long cylinder of square cross-section in a smooth and in a turbulent stream. Journal of Fluid Mechanics, 25, 481–494 (1966)

    Article  Google Scholar 

  3. Okajima, A. Strouhal numbers of rectangular cylinders. Journal of Fluid Mechanics, 123, 379–398 (1982)

    Article  Google Scholar 

  4. Bearman, P. W. and Trueman, D. M. An investigation of the flow around rectangular cylinders. Aeronautical Quarterly, 23, 229–237 (1972)

    Google Scholar 

  5. Courchesne, J. and Laneville, A. An experimental evaluation of drag coefficient for rectangular cylinders exposed to grid turbulence. Journal of Fluids Engineering, 104, 523–528 (1982)

    Article  Google Scholar 

  6. Nakamura, Y. and Tomonari, Y. The effect of turbulence on the drags of rectangular prisms. Japan Society of Aeronautical Space Sciences Transactions, 19, 82–86 (1976)

    Google Scholar 

  7. Davis, R. W., Moore, E. F., and Purtell, L. P. A numerical-experimental study on confined flow around rectangular cylinders. Physics of Fluids, 23, 46–59 (1984)

    Article  Google Scholar 

  8. Lyn, D. A. and Rodi, W. The flapping shear layer formed by flow separation from the forward corner of a square cylinder. Journal of Fluid Mechanics, 267, 353–376 (1994)

    Article  Google Scholar 

  9. Gu, Z. F. and Sun, T. F. On interference between two circular cylinders in staggered arrangement at high subcritical Reynolds numbers. Journal of Wind Engineering and Industrial Aerodynamics, 80, 287–309 (1999)

    Article  Google Scholar 

  10. Gu, Z. F. and Sun, T. F. Classifications of flow pattern on three circular cylinders in equilateraltriangular arrangements. Journal of Wind Engineering and Industrial Aerodynamics, 89, 553–568 (2001)

    Article  Google Scholar 

  11. Luo, S. C., Chew, Y. T., and Ng, Y. T. Characteristics of square cylinder wake transition flows. Physics of Fluids, 15, 2549–2559 (2003)

    Article  Google Scholar 

  12. So, R. M. C., Wang, X. Q., Xie, W. C., and Zhu, J. Free-stream turbulence effects on vortexinduced vibration and flow-induced force of an elastic cylinder. Journal of Fluids and Structures, 24, 481–495 (2008)

    Article  Google Scholar 

  13. Zhou, Y. Vortical structures behind three side-by-side. Experiments in Fluids, 34, 68–76 (2003)

    Article  Google Scholar 

  14. Wang, H. F. and Zhou, Y. The finite-length square cylinder near wake. Journal of Fluid Mechanics, 638, 453–490 (2009)

    Article  MATH  Google Scholar 

  15. Alam, M. M., Zhou, Y., Zhao, J. M., Flamand, O., and Boujard, O. Classification of the tripped cylinder wake and bi-stable phenomenon. International Journal of Heat and Fluid Flow, 31, 545–560 (2010)

    Article  Google Scholar 

  16. Alam, M. M., Zhou, Y., and Wang, X. W. The wake of two side-by-side square cylinders. Journal of Fluid Mechanics, 669, 432–471 (2011)

    Article  MATH  Google Scholar 

  17. Kelkar, K. M. and Patankar, S. V. Numerical prediction of vortex shedding behind a square cylinder. International Journal for Numerical Methods in Fluids, 14, 327–341 (1992)

    Article  MATH  Google Scholar 

  18. Robichaux, J., Balachandar, S., and Vanka, S. P. Three-dimensional Floquet instability of the wake of square cylinder. Physics of Fluids, 11, 560–578 (1999)

    Article  MATH  MathSciNet  Google Scholar 

  19. Williamson, C. H. K. Vortex dynamics in the cylinder wake. Annual Review of Fluid Mechanics, 28, 477–525 (1996)

    Article  Google Scholar 

  20. Bosch, G. and Rodi, W. Simulation of vortex shedding past a square cylinder with different turbulence models. International Journal for Numerical Methods in Fluids, 28, 601–616 (1998)

    Article  MATH  Google Scholar 

  21. Kato, M. and Launder, B. E. The modelling of turbulent flow around stationary and vibrating square cylinders. Proceeding of 9th Symposium Turbulent Shear Flows, Kyoto, 10-4-1 (1993)

    Google Scholar 

  22. Sohankar, A., Norberg, C., and Davidson, L. Simulation of three-dimensional flow around a square cylinder at moderate Reynolds numbers. Physics of Fluids, 11, 288–306 (1999)

    Article  MATH  Google Scholar 

  23. Tao, W. Q. Numerical Heat Transfer (in Chinese), Xi’an Jiantong University Press, Xi’an (1988)

    Google Scholar 

  24. Patankar, S. V. Numerical Heat Transfer and Fluid Flow, Hemisphere, New York (1980)

    MATH  Google Scholar 

  25. Saha, A. K., Biswas, G., and Muralidhar, K. Three-dimensional study of flow past a square cylinder at low Reynolds numbers. International Journal of Heat and Fluid Flow, 24, 54–66 (2003)

    Article  Google Scholar 

  26. Harlow, F. H. and Welch, J. E. Numerical calculation of time dependent viscous incompressible flow of fluid with free surfaces. Physics of Fluids, 8, 2182–2188 (1965)

    Article  MATH  Google Scholar 

  27. Niu, J. L. and Zhu, Z. J. Numerical study of three-dimensional flows around two identical square cylinders in staggered arrangements. Physics of Fluids, 18, 044106 (2006)

    Article  Google Scholar 

  28. Niu, J. L., Zhu, Z. J., and Huang, S. H. Numerical study of convective heat transfer from two identical square cylinders submerged in a uniform cross flow. Numerical Heat Transfer, Part A, 50, 21–44 (2006)

    Article  Google Scholar 

  29. Hanjalic, K. One-point closure model for buoyancy-driven turbulent flows. Annual Review of Fluid Mechanics, 34, 321–347 (2002)

    Article  MathSciNet  Google Scholar 

  30. Groetzbach, G. Direct numerical simulation of laminar and turbulent Benard convection. Journal of Fluid Mechanics, 119, 27–53 (1982)

    Article  MATH  Google Scholar 

  31. Manhart, M. A zonal grid algorithm for DNS of turbulent boundary layers. Computers and Fluids, 33, 435–461 (2004)

    Article  MATH  Google Scholar 

  32. Holmes, P., Lumley, J. L., and Berkooz, G. Turbulence, Coherent Structures, Dynamicsal Systems and Symmetry, Cambridge University Press, Cambridge (1996)

    Google Scholar 

  33. Friedrich, R. and Su, M. D. Large eddy simulation of a turbulent wall-bounded shear layer with longitudinal curvature. Lecture Notes in Physics, 170, 196–202 (1982)

    Article  Google Scholar 

  34. McMillan, O. J. and Ferziger, J. H. Direct testing of subgrid-scale models. AIAA Journal, 17, 1340–1346 (1979)

    Article  Google Scholar 

  35. Smagorinsky, J. S. General circulation experiments with the primitive equations, the basic experiment. Monthly Weather Review, 91, 99–164 (1963)

    Article  Google Scholar 

  36. Moin, P. and Kim, J. Numerical investigation of turbulent channel flow. Journal of Fluid Mechanics, 118, 341–377 (1982)

    Article  MATH  Google Scholar 

  37. Madabhushi, R. K. and Vanka, S. P. Large eddy simulation of turbulence-driven secondary flow in a square duct. Physics of Fluidss A: Fluid Dynamics, 3, 2734–2745 (1991)

    Article  MATH  Google Scholar 

  38. Su, M. D. and Friedrich, R. Investigation of fully developed turbulent flow in a straight duct with large eddy simulation. Journal of Fluids Engineering, 116, 677–684 (1994)

    Article  Google Scholar 

  39. Vázquez, M. S. and Métais, O. Large-eddy simulation of the turbulent flow through a heated square duct. Journal of Fluid Mechanics, 453, 201–238 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  40. Métais, O. and Lesieur, M. New trend in large eddy simulation of turbulence. Annual Review of Fluid Mechanics, 28, 45–82 (1996)

    Article  Google Scholar 

  41. Pallares, J. and Davidson, L. Large-eddy simulations of turbulent flow in a rotating square duct. Physics of Fluids, 12, 2878–2894 (2000)

    Article  Google Scholar 

  42. Pallares, J. and Davidson, L. Large-eddy simulations of turbulent heat transfer in stationary and rotating square ducts. Physics of Fluids, 14, 2804–2816 (2002)

    Article  Google Scholar 

  43. Germano, M., Piomelli, U., Moin, P., and Cabot, W. H. A dynamic subgrid-scale eddy viscosity model. Physics of Fluidss A: Fluid Dynamics, 3, 1760–1765 (1991)

    Article  MATH  Google Scholar 

  44. Lilly, D. K. A proposed modification of the Germano subgrid-scale closure model. Physics of Fluidss A: Fluid Dynamics, 4, 633–635 (1992)

    Article  Google Scholar 

  45. Cui, G. X., Zhou, H. B., Zhang, Z. S., and Shao, L. A new subgrid eddy viscosity model and its application (in Chinese). Chinese Journal of Computer Physics, 21, 289–293 (2004)

    Google Scholar 

  46. Cui, G. X., Xu, C. X., and Zhang, Z. S. Progress in large eddy simulation of turbulent flows (in Chinese). Acta Aerodynamica Sinica, 22, 121–129 (2004)

    Google Scholar 

  47. Vreman, A. W. An eddy-viscosity subgrid-scale model for turbulent shear flow: algebraic theory and applications. Physics of Fluids, 16, 3670–3681 (2004)

    Article  Google Scholar 

  48. Verma, A. and Mahesh, K. A Lagrangian subgrid-scale model with dynamic estimation of Lagrangian time scale for large eddy simulation of complex flows. Physics of Fluids, 24, 085101 (2012)

  49. Holm, D. D. Fluctuation effects on 3D Lagrangian mean and Eulerian mean fluid motion. Physica D, 133, 215–269 (1999)

    Article  MATH  MathSciNet  Google Scholar 

  50. Cheskidov, A., Holm, D. D., Olson, E., and Titi, E. S. On a Leray-α model of turbulence. Proceedings of the Royal Society, 461, 629–649 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  51. Geurts, B. J. and Holm, D. D. Regularization modeling for large-eddy simulation. Physics of Fluids, 15, 13–16 (2003)

    Article  MathSciNet  Google Scholar 

  52. van Reeuwijk, M., Jonker, H. J. J., and Hanjalic, K. Wind and boundary layers in Rayleigh-Bénard convection I, analysis and modelling. Physical Review E, 77, 036311 (2008)

  53. van Reeuwijk, M., Jonker, H. J. J., and Hanjalic, K. Leray-α simulations of wall-bounded turbulent flows. International Journal of Heat and Fluid Flow, 30, 1044–1053 (2009)

    Article  Google Scholar 

  54. Trias, F. X., Verstappen, R. W. C. P., Gorobets, A., Soria, M., and Oliva, A. Parameter-free symmetry-preserving regularization modeling of a turbulent differentially heated cavity. Computers and Fluids, 39, 1815–1831 (2010)

    Article  MATH  Google Scholar 

  55. Verstappen, R. On restraining the production of small scales of motion in a turbulent channel flow. Computers and Fluids, 37, 887–897 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  56. Chandrasekhar, S. Hydrodynamic and Hydromagnetic Stability, Oxford University Press, Cambridge (1961)

    MATH  Google Scholar 

  57. Zhou, J., Adrian, R. J., Balachandar, S., and Kendall, T. M. Mechanisms of generating coherent packets of Hairpin vortices in channel flow. Journal of Fluid Mechanics, 387, 353–396 (1999)

    Article  MATH  MathSciNet  Google Scholar 

  58. Ganapathisubramani, B., Longmire, E. K., and Marusic, I. Experimental investigation of vortex properties in a turbulent boundary layer. Physics of Fluids, 18, 155105 (2006)

    Article  Google Scholar 

  59. Lin, C. and Zhu, Z. Direct numerical simulation of incompressible flows in a zero-pressure gradient turbulent boundary layer. Advances in Applied Mathematics and Mechanics, 2, 503–517 (2010)

    MathSciNet  Google Scholar 

  60. Orlanski, I. A simple boundary condition for unbounded flows. Journal of Computational Physics, 21, 251–269 (1976)

    Article  MATH  Google Scholar 

  61. Yang, H. X., Chen, T. Y., and Zhu, Z. J. Numerical study of forced turbulent heat convection in a straight square duct. International Journal of Heat and Mass Transfer, 52, 3128–3136 (2009)

    Article  MATH  Google Scholar 

  62. Khanafer, K., Vafai, K., and Lightstone, M. Mixed convection heat transfer in two dimensional open-ended enclosures. International Journal of Heat and Mass Transfer, 45, 5171–5190 (2002)

    Article  MATH  Google Scholar 

  63. Papanicolaou, E. and Jaluria, Y. Transition to a periodic regime in mixed convection in a square cavity. Journal of Fluid Mechanics, 239, 489–509 (1992)

    Article  Google Scholar 

  64. Nikitin, N. Finite-difference method for incompressible Navier-Stokes equations in arbitrary orthogonal curvilinear coordinates. Journal of Computational Physics, 217, 759–781 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  65. Ni, M. J. and Abdou, M. A. A bridge between projection methods and simple type methods for incompressible Navier-Stokes equations. International Journal of Numerical Methods in Engineering, 72, 1490–1512 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  66. Tian, Z. F., Liang, X., and Yu, P. X. A higher order compact finite difference algorithm for solving the incompressible Navier-Stokes equations. International Jouranl of Numerical Methods in Engineering, 88, 511–532 (2011)

    Article  MATH  MathSciNet  Google Scholar 

  67. Brown, D. L., Cortez, R., and Minion, M. L. Accurate projection methods for the incompressible Navier-Stokes equations. Journal of Computational Physics, 168, 464–499 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  68. Zhu, Z. J., Yang, H. X., and Chen, T. Y. Numerical study of turbulent heat and fluid flow in a straight square duct at higher Reynolds numbers. International Jouranal of Heat Mass Transfer, 53, 356–364 (2010)

    Article  MATH  Google Scholar 

  69. Baker, T. J., Potential flow calculation by the approximate factorization method. Journal of Computational Physics, 42, 1–19 (1981)

    Article  MATH  MathSciNet  Google Scholar 

  70. van der Vorst, H. A. BiCGSTAB: a fast and smoothly converging variant of BICG for the solution of non-symmetric linear system. Journal on Scientific and Statistical Computing, 13, 631–644 (1992)

    Article  MATH  Google Scholar 

  71. Zhu, Z. J. and Yang, H. X. Numerical investigation of transient laminar natural convection of air in a tall cavity. Heat and Mass Transfer, 39, 579–587 (2003)

    Article  Google Scholar 

  72. Zhu, Z. J. and Yang, H. X. Discrete Hilbert transformation and its application to estimate the wind speed in Hong Kong. Journal of Wind Engineering and Industrial Aerodynamics, 90, 9–18 (2002)

    Article  Google Scholar 

  73. Wu, F. Nonstandard Picture of Turbulence, 2nd ed., 1–30 (2004) http://arXiv:physics/0308012

    Google Scholar 

  74. Wu, F. Some key concepts in nonstandard analysis theory of turbulence. Chinese Physics Letters, 22, 2604–2607 (2005)

    Article  Google Scholar 

  75. Wu, F. Mathematical concepts and their physical foundation in the nonstandard analysis theory of turbulence. Chinese Physics, 16, 1186–1196 (2007)

    Article  Google Scholar 

  76. Shraiman, B. I. and Siggia, D. E. Scalar turbulence. nature, 405, 639–646 (2000)

    Article  Google Scholar 

  77. Adrian, R. J., Meinhart, C. D., and Tomkins, C. D. Vortex organization in the outer region of the boundary layer. Journal of Fluid Mechanics, 422, 1–54 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  78. Natrajan, V. K., Wu, Y., and Christensen, K. T. Spatial signatures of retrograde spanwise vortices in wall turbulence. Journal of Fluid Mechanics, 574, 155–167 (2007)

    Article  MATH  Google Scholar 

  79. Tennekes, H. and Lumley, J. L. A First Course in Turbulence, MIT Press, Cambridge, 146–195 (1974)

    Google Scholar 

  80. Frisch, U. The Legacy of A. N. Kolmogorov in Turbulence, Cambridge University Press, Cambrigde, 81–88 (1995)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zuo-jin Zhu  (朱祚金).

Additional information

Project supported by the National Natural Science Foundation of China (No. 11372303)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhu, Zj., Niu, Jl. & Li, Yl. Swirling-strength based large eddy simulation of turbulent flow around single square cylinder at low Reynolds numbers. Appl. Math. Mech.-Engl. Ed. 35, 959–978 (2014). https://doi.org/10.1007/s10483-014-1847-7

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10483-014-1847-7

Key words

Chinese Library Classification

2010 Mathematics Subject Classification

Navigation