Skip to main content
Log in

Clostridium lamae sp. nov., a novel bacterium isolated from the fresh feces of alpaca

  • Original Paper
  • Published:
Antonie van Leeuwenhoek Aims and scope Submit manuscript

Abstract

A novel Gram-positive, anaerobic, nonspore-forming, rod-shaped bacterium, designated strain NGMCC 1.200840 T, was isolated from the alpacas fresh feces. The taxonomic position of the novel strain was determined using a polyphasic approach. Phylogenetic analysis based on 16S rRNA gene sequences revealed strain NGMCC 1.200840 T was a member of the genus Clostridium and closely related to Clostridium tertium DSM 2485 T (98.16% sequence similarity). Between strains NGMCC 1.200840 T and C. tertium DSM 2485 T, the average nucleotide identity (ANI) and digital DNA˗DNA hybridization (dDDH) were 79.91% and 23.50%, respectively. Genomic DNA G + C content is 28.44 mol%. The strain can utilise D-glucose, D-mannitol, D-lactose, D-saccharose, D-maltose, D-xylose, L-arabinose, D-cellobiose, D-mannose, D-melezitose, D-raffinose, D-sorbitol, L-rhamnose, D-trehalose, D-galactose and Arbutin to produce acid. The optimal growth pH was 7, the temperature was 37 °C, and the salt concentration was 0–0.5% (w/v). The major cellular fatty acids (> 10%) included iso-C15:0, anteiso-C15:0 and iso-C17:0 3-OH. The polar lipids consisted of diphosphatidylglycerol, phosphatidylglycerol, phosphatidylethanolamine, three unidentified phospholipids and two unidentified aminolipids. Based on phenotypic, phylogenetic and chemotaxonomic characteristics, NGMCC 1.200840 T represents a novel species within the genus Clostridium, for which the named Clostridium lamae sp. nov. is proposed. The type strain is NGMCC 1.200840 T (= CGMCC 1.18014 T = JCM 35704 T).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Data availability

The GenBank accession numbers for 16S rRNA gene sequences of strains NGMCC 1.200840 T is ON287258. The draft genome sequences of strains NGMCC 1.200840 T has been deposited at NCBI under the accession no. JASCQJ000000000.

References

  • Andreesen JR, Bahl H, Gottschalk G (1989) Introduction to the physiology and biochemistry of the genus Clostridium. In: Minton NP, Clarke DJ (eds) Clostridia. Springer, US, Boston, MA, pp 27–62

    Chapter  Google Scholar 

  • Auch AF, von Jan M, Klenk HP, Göker M (2010) Digital DNA-DNA hybridization for microbial species delineation by means of genome-to-genome sequence comparison. Stand Genomic Sci 2:117–134

    Article  PubMed  PubMed Central  Google Scholar 

  • Awang GM, Jones GA, Ingledew WM, Kropinski AMB (1988) The Acetone-butanol-ethanol fermentation. CRC Crit Rev Microbiol 15:S33–S67

    Article  Google Scholar 

  • Bahl H, Dürre P (2001) Clostridia: Biotechnology and medical applications. Wiley-VCH, Weinheim, Germany

    Book  Google Scholar 

  • Baur T, Dürre P (2023) New insights into the physiology of the propionate producers Anaerotignum propionicum and Anaerotignum neopropionicum (formerly Clostridium propionicum and Clostridium neopropionicum). Microorganisms 11:685

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Benson DA, Cavanaugh M, Clark K, Karsch-Mizrachi I, Lipman DJ, Ostell J, Sayers EW (2013) GenBank. Nucleic Acids Res 41(Database issue):D36–42

  • Braun M, Mayer F, Gottschalk G (1981) Clostridium aceticum (Wieringa), a microorganism producing acetic acid from molecular hydrogen and carbon dioxide. Arch Microbiol 128:288–293

    Article  CAS  PubMed  Google Scholar 

  • Braun M (1981) Charakterisierung von anaeroben autotrophen essigsäurebildnern and untersuchungen zur essigsäurebildung aus wasserstoff and kohlendioxid durch Clostridium aceticum. Ph.D. dissertation. University of Göttingen, Germany

  • Broda DM, Saul DJ, Lawson PA, Bell RG, Musgrave DR (2000) Clostridium gasigenes sp. nov., a psychrophile causing spoilage of vacuum-packed meat. Int J Syst Evol Microbiol 50:107–118

  • Browne HP, Forster SC, Anonye BO, Kumar N, Neville BA, Stares MD, Goulding D, Lawley TD (2016) Culturing of ‘unculturable’ human microbiota reveals novel taxa and extensive sporulation. Nature 533:543–546

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  • Bruant G, Lévesque M-J, Peter C, Guiot SR, Masson L (2010) Genomic analysis of carbon monoxide utilization and butanol production by Clostridium carboxidivorans strain P7T. PLoS ONE 5:1–12

    Article  Google Scholar 

  • Chaumeil PA, Mussig AJ, Hugenholtz P, Parks DH (2020) GTDB-Tk: a toolkit to classify genomes with the genome taxonomy database. Bioinformatics 36:1925–1927

    Article  CAS  Google Scholar 

  • Chen D, Jin D, Huang S, Wu J, Xu M, Liu T, Dong W, Liu X, Wang S, Zhong W, Liu Y, Jiang R, Piao M, Wang B, Cao H (2020) Clostridium butyricum, a butyrate-producing probiotic, inhibits intestinal tumor development through modulating Wnt signaling and gut microbiota. Cancer Lett 469:456–467

    Article  CAS  PubMed  Google Scholar 

  • Chun J, Oren A, Ventosa A, Christensen H, Arahal DR (2018) Proposed minimal standards for the use of genome data for the taxonomy of prokaryotes. Int J Syst Evol Microbiol 68:461–466

    Article  CAS  PubMed  Google Scholar 

  • Dang LH, Bettegowda C, Huso DL, Kinzler KW, Vogelstein B (2001) Combination bacteriolytic therapy for the treatment of experimental tumors. Proc Natl Acad Sci USA 98:15155–15160

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  • De Vos N, Mevissen-Verhage E, van Amerongen WH, Marcelis J (1982) A new selective medium for the culture of clostridia from human faeces. Eur J Clin Microbiol 1:267–271

    Article  PubMed  Google Scholar 

  • Doi RH, Kosugi A (2004) Cellulosomes: plant-cell-wall-degrading enzyme complexes. Nat Rev Microbiol 2:541–551

    Article  CAS  PubMed  Google Scholar 

  • Dürre P (2005) Handbook on Clostridia. CRC Press-Taylor and Francis Group, Boca Raton, FL

    Book  Google Scholar 

  • Felsenstein J (1981) Evolutionary trees from DNA sequences: a maximum likelihood approach. J Mol Evol 17:368–376

    Article  ADS  CAS  PubMed  Google Scholar 

  • Felsenstein J (1985) Confidence limits on phylogenies: an approach using the bootstrap. Evolution 39:783–791

    Article  PubMed  Google Scholar 

  • Galperin MY, Makarova KS, Wolf YI, Koonin EV (2015) Expanded microbial genome coverage and improved protein family annotation in the COG database. Nucleic Acids Res 3:D261–D269

    Article  Google Scholar 

  • Greetham HL, Gibson GR, Giffard C, Hippe H, Merkhoffer B (2003) Clostridium colicanis sp. nov., from canine faeces. Int J Syst Evol Microbiol 53:259–262

  • Hagihara M, Ariyoshi T, Kuroki Y, Eguchi S, Higashi S, Mori T, Nonogaki T, Iwasaki K, Yamashita M, Asai N, Koizumi Y, Oka K, Takahashi M, Yamagishi Y, Mikamo H (2021) Clostridium butyricum enhances colonization resistance against Clostridioides difficile by metabolic and immune modulation. Sci Rep 11:15007

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hahnke S, Striesow J, Elvert M, Mollar XP, Klocke M (2014) Clostridium bornimense sp. nov., isolated from a mesophilic, two-phase, laboratory-scale biogas reactor. Int J Syst Evol Microbiol 64:2792–2797

    Article  CAS  PubMed  Google Scholar 

  • Hecker M, Schumann W, Volker U (1996) Heat-shock and general stress response in Bacillus subtilis. Mol Microbiol 19:417–428

    Article  CAS  PubMed  Google Scholar 

  • Johnson M, Zaretskaya I, Raytselis Y, Merezhuk Y, McGinnis S, Madden TL (2008) NCBI BLAST: a better web interface. Nucleic Acids Res 36:W5-9

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kanehisa M, Goto S, Kawashima S, Okuno Y, Hattori M (2004) The KEGG resource for deciphering the genome. Nucleic Acids Res 32:D277–D280

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kanehisa M, Goto S, Hattori M, Aoki-Kinoshita KF, Itoh M, Kawashima S, Katayama T, Araki M, Hirakawa M (2006) From genomics to chemical genomics: new developments in KEGG. Nucleic Acids Res 34:D354–D357

    Article  CAS  PubMed  Google Scholar 

  • Kannan L, Wheeler WC (2012) Maximum parsimony on phylogenetic networks. Algorithms Mol Biol 7:9

    Article  PubMed  PubMed Central  Google Scholar 

  • Kelly WJ, Asmundson RV, Hopcroft DH (1987) Isolation and characterization of a strictly anaerobic, cellulolytic spore former: Clostridium chartatabidum sp. nov. Arch Microbiol 147:169–173

  • Kimura M (1980) A simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequences. J Mol Evol 16:111–120

    Article  ADS  CAS  PubMed  Google Scholar 

  • Kumar S, Stecher G, Li M, Knyaz C, Tamura K (2018) MEGA X: Molecular evolutionary genetics analysis across computing platforms. Mol Biol Evol 35:1547–1549

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lagier JC (2013) Human gut microbiota diversity studied by culturomics and pyrosequencing. thesis. Aix Marseille Université, Marseille, France

  • Li R, Li Y, Kristiansen K, Wang J (2008) SOAP: short oligonucleotide alignment program. Bioinformatics 24:713–714

    Article  CAS  PubMed  Google Scholar 

  • Li R, Zhu H, Ruan J, Qian W, Fang X, Shi Z, Li Y, Li S, Shan G, Kristiansen K, Li S, Yang H, Wang J, Wang J (2010) De novo assembly of human genomes with massively parallel short read sequencing. Genome Res 20:265–272

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li X, Sun P, Gong L, Shi WX, Xiang ZG, Li M, Su L, Qin C (2023) Bacteroides rhinocerotis sp. nov., isolated from the fresh feces of rhinoceros in Beijing Zoo. Arch Microbiol 205:169

    Article  CAS  PubMed  Google Scholar 

  • Luhrs H, Gerke T, Schauber J, Dusel G, Scheppach W, Menzel T (2001) Cytokine-activated degradation of inhibitory kappa B protein alpha is inhibited by the short chain fatty acid butyrate. Int J Colorect Dis 16:195–201

    Article  CAS  Google Scholar 

  • Lütke-Eversloh T (2014) Application of new metabolic engineering tools for Clostridium acetobutylicum. Appl Microbiol Biotechnol 98:5823–5837

    Article  PubMed  Google Scholar 

  • Marler LM, Siders JA, Wolters LC, Pettigrew Y, Skitt BL, Allen SD (1992) Comparison of five cultural procedures for isolation of Clostridium difficile from stools. J Clin Microbiol 30:514–516

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Meier-Kolthoff JP, Auch AF, Klenk HP, Göker M (2013) Genome sequence-based species delimitation with confidence intervals and improved distance functions. BMC Bioinformatics 14:1–14

    Article  Google Scholar 

  • Minnikin DE, O’Donnell AG, Goodfellow M, Alderson G, Athalye M, Schaal A, Parlett JH (1984) An integrated procedure for the extraction of bacterial isoprenoid quinones and polar lipids. J Microbiol Methods 2:233–241

    Article  CAS  Google Scholar 

  • Minton NP, Clarke DJ (2013) Clostridia. Springer Science & Business Media

  • Mishiro T, Kusunoki R, Otani A, Ansary MM, Tongu M, Harashima N (2013) Butyric acid attenuates intestinal inflammation in murine DSS-induced colitis model via milk fat globule-EGF factor 8. Lab Invest 93:834–843

    Article  CAS  PubMed  Google Scholar 

  • Naud S, Khelaifia S, Mbogning Fonkou MD, Dione N, Lagier JC, Raoult D (2020) Proof of concept of culturomics use of time of care. Front Cell Infect Microbiol 10:524769

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Padden A, Nikki DVM, Edmonds J, Collins MD, Alvarez N, John P (1999) An indigo-reducing moderate thermophile from a woad vat, Clostridium isatidis sp. nov. Int J Syst Evol Microbiol 49:1025–1031

    Article  CAS  Google Scholar 

  • Parks DH, Chuvochina M, Waite DW, Rinke C, Skarshewski A, Chaumeil PA, Hugenholtz P (2018) A standardized bacterial taxonomy based on genome phylogeny substantially revises the tree of life. Nat Biotechnol 36:996–1004

    Article  CAS  PubMed  Google Scholar 

  • Partansky AM, Henry BS (1935) Anaerobic bacteria capable of the fermentation of sulfite waste liquor. J Bacteriol 30:559–571

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Prazmowski A (1880) Untersuchung über die eentwickelungsgeschichte und fermentwirking fermentwirking einiger bacterienbacterien-artenarten. Inaugural Dissertation. Hugo Voigt Leipzig, Germany

  • Pyne ME, Liu X, Moo-Young M, Chung DA, Chou P (2016) Genome directed analysis of prophage excision, host defence systems, and central fermentative metabolism in Clostridium pasteurianum. Sci Rep 6:26228

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  • Rainey F A, Hollen B J, Small A (2009) Genus I. Clostridium. Prazmowski 1880, 23AL. In: Bergey's Manual of Systematic Bacteriology, 2nd edn., vol 3 (The Firmicutes), pp 738–828

  • Rappert S, Song L, Sabra W, Wang W, Zeng A-P (2013) Draft genome sequence of type strain Clostridium pasteurianum DSM 525 (ATCC 6013), a promising producer of chemicals and fuels. Genome Announc 1:e00232-e1212

    Article  PubMed  PubMed Central  Google Scholar 

  • Richter M, Rosselló-Móra R (2009) Shifting the genomic gold standard for the prokaryotic species definition. Proc Natl Acad Sci 106:19126–19131

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  • Saitou N, Nei M (1987) The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 4:406–425

    CAS  PubMed  Google Scholar 

  • Sakamoto M (2002) Reclassification of bacteroides forsythus as Tannerella forsythensis corrig., gen. nov., comb. nov. Int J Syst Evol Microbiol 52:841–849

    CAS  PubMed  Google Scholar 

  • Sakata T, Adachi M, Hashida M, Sato N, Kojima T (1995) Effect of n-butyric acid on epithelial cell proliferation of pig colonic mucosa in short-term culture. Dtsch Tierarztl Wochenschr 102:163–164

    CAS  PubMed  Google Scholar 

  • Sasser M (1990) Identification of bacteria by gas chromatography of cellular fatty acids. USFCC News Lett 20:1–6

    Google Scholar 

  • Schiel B, Dürre P (2010) Encyclopedia of industrial biotechnology bioprocess bioseparation and cell technology. In: Flickinger MC (ed) Clostridium, vol 3. John Wiley & Sons. Hoboken, NJ pp, pp 1701–1715

    Google Scholar 

  • Segain JP, Dela Bletiere DR, Boureille A, Leray V, Gervois N, Rosales C, Ferrier L, Bonnet C, Blottiere HM, Glamiche JP (2000) Butyrate inhibits inflammatory responses through NFkappaB inhibition. Implicat Crohn’s Disease 47:397–403

    CAS  Google Scholar 

  • Shi W, Sun Q, Fan G, Hideaki S, Moriya O, Itoh T, Zhou Y, Cai M, Kim SG, Lee JS, Sedlacek I, Arahal DR, Lucena T, Kawasaki H, Evtushenko L, Weir BS, Alexander S, Dénes D, Tanasupawat S, Eurwilaichitr L, Ingsriswang S, Gomez-Gil B, Hazbón MH, Riojas MA, Suwannachart C, Yao S, Vandamme P, Peng F, Chen Z, Liu D, Sun X, Zhang X, Zhou Y, Meng Z, Wu L, Ma J (2021) gcType: a high-quality type strain genome database for microbial phylogenetic and functional research. Nucleic Acids Res 49:D694–D705

    Article  CAS  PubMed  Google Scholar 

  • Thompson JD, Gibson TJ, Plewniak F, Jeanmougin F, Higgins DG (1997) The CLUSTAL_X windows interface: Flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Res 25:4876–4882

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tracy BP, Jones SW, Fast AG, Indurthi DC, Papoutsakis ET (2012) Clostridia: the importance of their exceptional substrate and metabolite diversity for biofuel and biorefinery applications. Curr Opin Biotechnol 23:364–381

    Article  CAS  PubMed  Google Scholar 

  • Van Mellaert L, Barbé S, Anné J (2006) Clostridium spores as anti-tumour agents. Trends Microbiol 14:190–196

    Article  PubMed  Google Scholar 

  • Waite DW, Vanwonterghem I, Rinke C, Parks DH, Zhang Y, Takai K, Sievert SM, Simon J, Campbell BJ, Hanson TE, Woyke T, Klotz MG, Hugenholtz P (2017) Comparative genomic analysis of the class Epsilonproteobacteria and proposed reclassification to epsilonbacteraeota (phyl. nov.). Front Microbiol 8:682

    Article  PubMed  PubMed Central  Google Scholar 

  • Wang F, Qian F, Zhang Q, Zhao J, Cen J, Zhang J, Zhou J, Luo M, Jia C, Rong X, Chu M (2023) The reduced SCFA-producing gut microbes are involved in the inflammatory activation in Kawasaki disease. Front Immunol 14:1124118

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wiegel J (2009) Family I Clostridiaceae. In: Bergey's Manual of Systematic Bacteriology, 2nd edn. vol 3 The Firmicutes. pp 736–851

  • Yang Z, Amal FE, Yang L, Liu Y, Zhu L, Zhu Z, Jiang L (2022) Functional characterization of Clostridium tyrobutyricum L319: a promising next-generation probiotic for short-chain fatty acid production. Front Microbiol 13:926710

    Article  PubMed  PubMed Central  Google Scholar 

  • Yoon SH, Ha SM, Kwon S, Lim J, Kim Y, Seo H, Chun J (2017) Introducing EzBioCloud: a taxonomically united database of 16S rRNA gene sequences and whole-genome assemblies. Int J Syst Evol Microbiol 67:1613–1617

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Funding

This research was supported by the National Key Research and Development Program of China (2021YFF0702900), CAMS initiative for Innovative Medicine of China (2021-I2M-1–039, 2021-I2M-1–034), and the open fund of Key Laboratory of Microbial Resources Collection and Preservation, Ministry of Agriculture and Rural Afairs (KLMRCP2021-09).

Author information

Authors and Affiliations

Authors

Contributions

X. L. and L. S wrote the manuscript text and the main experiments. M.L was responsible for the analysis of the genome of the strain and figure 2. W. S finished collecting fecal samples and isolation of fecal strains. X.L and Z.X. undertaked some physiological characterization experiments. L.S. was responsible for article revision and experimental guidance.

Corresponding author

Correspondence to Lei Su.

Ethics declarations

Conflict of interest

The authors declare that there is no conflict of interest.

Ethics approval

In this study, the collection and analysis of animal feces did not involve animal ethics.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, X., Li, M., Shi, W. et al. Clostridium lamae sp. nov., a novel bacterium isolated from the fresh feces of alpaca. Antonie van Leeuwenhoek 117, 36 (2024). https://doi.org/10.1007/s10482-024-01931-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10482-024-01931-7

Keywords

Navigation