Skip to main content
Log in

Paenibacillus helianthi sp. nov., a nitrogen fixing species isolated from the rhizosphere of Helianthus annuus L.

  • Original Paper
  • Published:
Antonie van Leeuwenhoek Aims and scope Submit manuscript

Abstract

Three facultatively anaerobic endospore-forming bacteria were isolated from the rhizosphere of sunflowers grown in fields of Rio Grande do Sul State, Brazil. The designated type strain P26ET was previously identified as a sunflower growth promoting bacterium and is able to fix nitrogen and to excrete ammonia. According to analyses of 16S rRNA gene sequences, P26ET presented similarity values above 98.8% in relation to Paenibacillus azotifigens NF2-4-5T, Paenibacillus graminis RSA19T, Paenibacillus jilunlii Be17T, Paenibacillus salinicaeni LAM0A28T, and Paenibacillus sonchi X19-5T. Phylogenetic reconstructions based on 16S rRNA gene and core proteome data showed that the strains P26ET, P3E and P32E form a distinct clade, which did not include any type strain of the currently described Paenibacillus species. Also, genomic comparisons using average nucleotide identity (ANI), Orthologous ANI and in silico DNA–DNA hybridization revealed similarity ranges below the recommended thresholds when the three isolates from sunflower were compared to their close relatives. The DNA G + C content of strain P26ET was determined to be 49.4 mol%. The major cellular fatty acids are anteiso-C15:0 and iso-C15:0, representing about 58 and 14% of the total fatty acids in P26ET, respectively. Based on different taxonomic genomic metrics, phylogeny, and phenotypic data, we propose that strain P26ET (= DSM 102269 = BR10509) represents a novel species within the genus Paenibacillus, for which the name Paenibacillus helianthi sp. nov. is proposed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Ambrosini A, Beneduzi A, Stefanski T, Pinheiro FG, Vargas LK, Passaglia LMP (2012) Screening of plant growth promoting Rhizobacteria isolated from sunflower (Helianthus annuus L.). Plant Soil 356:245–264

    Article  CAS  Google Scholar 

  • Ambrosini A, Stefanski T, Lisboa BB, Beneduzi A, Vargas LK, Passaglia LMP (2016) Diazotrophic bacilli isolated from the sunflower rhizosphere and the potential of Bacillus mycoides B38V as biofertiliser. Ann Appl Biol 168:93–110

    Article  CAS  Google Scholar 

  • Ash C, Priest FG, Collins MD (1993) Molecular identification of rRNA group 3 bacilli (Ash, Farrow, Wallbanks and Collins) using a PCR probe test. Antonie Van Leeuwenhoek 64(3–4):253–260

    CAS  PubMed  Google Scholar 

  • Aw YK, Ong KS, Lee LH, Cheow YL, Yule CM, Lee SM (2016) Newly isolated Paenibacillus tyrfis sp. nov., from Malaysian tropical peat swamp soil with broad spectrum antimicrobial activity. Front Microbiol 7:219

    Article  PubMed  PubMed Central  Google Scholar 

  • Aziz RK, Bartels D, Best AA et al (2008) The RAST server: rapid annotations using subsystems technology. BMC Genom 9(1):75

    Article  Google Scholar 

  • Bach E, Sant’Anna FH, Passos JFM, Balsanelli E, Baura VA, Pedrosa FO, Souza EM, Passaglia LMP (2017) Detection of misidentifications of species from the Burkholderia cepacia complex and description of a new member, the soil bacterium Burkholderia catarinensis sp. nov. Pathog Dis 75(6):ftx076

    Article  Google Scholar 

  • Beneduzi A, Costa PB, Parma M, Melo IS, Bodanese-Zanettini MH, Passaglia LMP (2010) Paenibacillus riograndensis sp. nov., a nitrogen-fixing species isolated from the rhizosphere of Triticum aestivum. Int J Syst Evol Microbiol 60:128–133

    Article  CAS  PubMed  Google Scholar 

  • Berendsen RL, Pieterse CM, Bakker PA (2012) The rhizosphere microbiome and plant health. Trends Plant Sci 17(8):478–486

    Article  CAS  PubMed  Google Scholar 

  • Berg G, Smalla K (2009) Plant species and soil type cooperatively shape the structure and function of microbial communities in the rhizosphere. FEMS Microbiol Ecol 68(1):1–13

    Article  CAS  PubMed  Google Scholar 

  • Berge O, Guinebretière MH, Achouak W, Normand P, Heulin T (2002) Paenibacillus graminis sp. nov. and Paenibacillus odorifer sp. nov., isolated from plant roots, soil and food. Int J Syst Evol Microbiol 52:607–616

    Article  CAS  PubMed  Google Scholar 

  • Boddey RM, Knowles R (1987) Methods for quantification of nitrogen fixation associated with gramineae. CRC Crit Rev Plant Sci 6:209–266

    Article  CAS  Google Scholar 

  • Bolleter WT, Bushman CJ, Tidwell PW (1961) Spectrophotometric determination of ammonia as indophenol. Anal Chem 33(4):592–594

    Article  CAS  Google Scholar 

  • Bradford MM (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72:248–254

    Article  CAS  PubMed  Google Scholar 

  • Burris RH (1972) Nitrogen fixation assay methods and techniques. Methods Enzymol 24:415–431

    Article  CAS  PubMed  Google Scholar 

  • Calvo P, Nelson L, Kloepper JW (2014) Agricultural uses of plant biostimulants. Plant Soil 383(1–2):3–41

    Article  CAS  Google Scholar 

  • Chan JZ-M, Halachev MR, Loman NJ, Constantinidou C, Pallen MJ (2012) Defining bacterial species in the genomic era: insights from the genus Acinetobacter. BMC Microbiol 12:302

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chun J, Oren A, Ventosa A, Christensen H, Arahal DR, Costa MS, Rooney AP, Yi H, Xu XW, Meyer S, Trujillo M (2018) Proposed minimal standards for the use of genome data for the taxonomy of prokaryotes. Int J Syst Evol Microbiol 68:461–466

    Article  PubMed  Google Scholar 

  • Cole JR, Wang Q, Fish JA, Chai B, McGarrell DM, Sun Y, Brown CT, Porras-Alfaro A, Kuske CR, Tiedje JM (2014) Ribosomal database project: data and tools for high throughput rRNA analysis. Nucleic Acids Res 42:D633–D642

    Article  CAS  PubMed  Google Scholar 

  • Eastman AW, Heinrichs DE, Yuan ZC (2014) Comparative and genetic analysis of the four sequenced Paenibacillus polymyxa genomes reveals a diverse metabolism and conservation of genes relevant to plant-growth promotion and competitiveness. BMC Genom 15(1):851

    Article  Google Scholar 

  • Elo S, Suominen I, Kämpfer P, Juhanoja J, Salkinoja-Salonen M, Haahtela K (2001) Paenibacillus borealis sp. nov., a nitrogen-fixing species isolated from spruce forest humus in Finland. Int J Syst Evol Microbiol 51(2):535–545

    Article  CAS  PubMed  Google Scholar 

  • Fox GE, Wisotzkey JD, Jurtshuk P (1992) How close is close: 16S rRNA sequence identity may not be sufficient to guarantee species identity. Int J Syst Bacteriol 42:166–170

    Article  CAS  PubMed  Google Scholar 

  • Glickmann E, Dessaux Y (1995) A critical examination of the specificity of the Salkowski reagent for indolic compounds produced by phytopathogenic bacteria. Appl Environ Microbiol 61:793–796

    CAS  PubMed  PubMed Central  Google Scholar 

  • Hall TA (1999) BioEdit: a user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. Nucl Acids Symp Ser 41:95–98

    CAS  Google Scholar 

  • Holt J (1986) Gram-positive bacteria other than Actinomycetes. Bergey’s manual of systematic bacteriology vol 2

  • Holt J (2000) Bergey’s manual of determinative bacteriology. Lippincott Williams & Wilkins, Philadelphia

    Google Scholar 

  • Hong YY, Ma YC, Zhou YG, Gao F, Liu HC, Chen SF (2009) Paenibacillus sonchi sp. nov., a nitrogen-fixing species isolated from the rhizosphere of Sonchus oleraceus. Int J Syst Evol Microbiol 59:2656–2661

    Article  CAS  PubMed  Google Scholar 

  • Jin HJ, Zhou YG, Liu HC, Chen SF (2011) Paenibacillus jilunlii sp. nov., a nitrogen-fixing species isolated from the rhizosphere of Begonia semperflorens. Int J Syst Evol Microbiol 61:1350–1355

    Article  PubMed  Google Scholar 

  • Kämpfer P, Kroppenstedt RM (1996) Numerical analysis of fatty acid patterns of coryneform bacteria and related taxa. Can J Microbiol 42:989–1005

    Article  Google Scholar 

  • Kanehisa M, Sato Y, Kawashima M, Furumichi M, Tanabe M (2016) KEGG as a reference resource for gene and protein annotation. Nucleic Acids Res 44:D457–D462

    Article  CAS  PubMed  Google Scholar 

  • Kim M, Oh HS, Park SC, Chun J (2014) Towards a taxonomic coherence between average nucleotide identity and 16S rRNA gene sequence similarity for species demarcation of prokaryotes. Int J Syst Evol Microbiol 64:346–351

    Article  CAS  PubMed  Google Scholar 

  • Kiran S, Swarnkar MK, Mayilraj S, Tewari R, Gulati A (2017) Paenibacillus ihbetae sp. nov., a cold-adapted antimicrobial producing bacterium isolated from high altitude Suraj Tal Lake in the Indian trans-Himalayas. Syst Appl Microbiol 40(7):430–439

    Article  CAS  PubMed  Google Scholar 

  • Kishore KH, Begum Z, Pathan AAK, Shivaji S (2010) Paenibacillus glacialis sp. nov., isolated from the Kafni glacier of the Himalayas, India. Int J Syst Evol Microbiol 60(8):1909–1913

    Article  CAS  PubMed  Google Scholar 

  • Kong BH, Liu QF, Liu M, Liu Y, Liu L, Li CL, Yu R, Li YH (2013) Paenibacillus typhae sp. nov., isolated from roots of Typha angustifolia L. Int J Syst Evol Microbiol 63(3):1037–1044

    Article  CAS  PubMed  Google Scholar 

  • Kuykendall LD, Roy MA, O’Neill JJ, Devine TE (1988) Fatty acids, antibiotic resistance, and deoxyribonucleic acid homology groups of Bradyrhizobium japonicum. Int J Syst Bacteriol 38:358–361

    Article  CAS  Google Scholar 

  • Lee HW, Roh SW, Yim KJ, Shin NR, Lee J, Whon TW, Kim JY, Hyun DW, Kim D, Bae JW (2013) Paenibacillus marinisediminis sp. nov., a bacterium isolated from marine sediment. J Microbiol 51:312–317

    Article  CAS  PubMed  Google Scholar 

  • Lee I, Kim YO, Park SC, Chun J (2015) OrthoANI: an improved algorithm and software for calculating average nucleotide identity. Int J Syst Evol Microbiol 66:1100–1103

    Article  PubMed  Google Scholar 

  • Ma Y, Zhang J, Chen S (2007) Paenibacillus zanthoxyli sp. nov., a novel nitrogen-fixing species isolated from the rhizosphere of Zanthoxylum simulans. Int J Syst Evol Microbiol 57(4):873–877

    Article  CAS  PubMed  Google Scholar 

  • MacFaddin J (2000) Biochemical tests for identification of medical bacteria. Lippincott Williams and Wilkins, Philadelphia

    Google Scholar 

  • Mayilraj S, Stackebrandt E (2014) The family Paenibacillaceae. In: Rosenberg E, DeLong EF, Lory S, Stackebrandt E, Thompson F (eds) The prokaryotes. Springer, Berlin, pp 267–280

    Google Scholar 

  • Meier-Kolthoff JP, Auch AF, Klenk H-P, Göker M (2013) Genome sequence-based species delimitation with confidence intervals and improved distance functions. BMC Bioinform 14:60

    Article  Google Scholar 

  • Mendes R, Kruijt M, de Bruijn I, Dekkers E, van der Voort M, Schneider JH, Piceno YM, DeSantis TZ, Andersen GL, Bakker PA, Raaijmakers JM (2011) Deciphering the rhizosphere microbiome for disease-suppressive bacteria. Science 332(6033):1097–1100

    Article  CAS  PubMed  Google Scholar 

  • Miller LT (1982) A single derivatization method for bacterial fatty acid methyl esters including hydroxy acids. J Clin Microbiol 16:584–586

    CAS  PubMed  PubMed Central  Google Scholar 

  • Moaledj K (1986) Comparison of Gram-staining and alternate methods, KOH test and aminopeptidase activity in aquatic bacteria: their application to numerical taxonomy. J Microbiol Methods 5:303–310

    Article  CAS  Google Scholar 

  • Panke-Buisse K, Poole AC, Goodrich JK, Ley RE, Kao-Kniffin J (2014) Selection on soil microbiomes reveals reproducible impacts on plant function. ISME J 9:980–989

    Article  PubMed Central  Google Scholar 

  • Peterson AR, Conn HJ, Melin CG (1934) Methods for the standardization of biological stains: part IV. Stain Technol 9(2):41–48

    Article  Google Scholar 

  • Priest FG (2009) Genus I, Paenibacillus. In: De Vos P, Garrity G, Jones D, Krieg NR, Ludwig W, Rainey FA, Schleifer KH, Whitman WB (eds) The firmicutes, Bergey’s manual of systematic bacteriology, vol 2, 2nd edn. Springer, New York, pp 269–296

    Google Scholar 

  • Rodionov DA, Dubchak IL, Arkin AP, Alm EJ, Gelfand MS (2005) Dissimilatory metabolism of nitrogen oxides in bacteria: comparative reconstruction of transcriptional networks. PLoS Comput Biol 1(5):e55

    Article  PubMed  PubMed Central  Google Scholar 

  • Rosselló-Móra R, Trujillo ME, Sutcliffe IC (2017) Introducing a digital protologue: a timely move towards a database-driven systematics of archaea and bacteria. Antonie Van Leeuwenhoek 110(4):455–456

    Article  PubMed  Google Scholar 

  • Sant’Anna FH, Ambrosini A, Souza R, Fernandes GC, Bach E, Balsanelli E, Baura V, Brito LF, Wendisch VF, Pedrosa FO, Souza EM, Passaglia LMP (2017) Reclassification of Paenibacillus riograndensis as a genomovar of Paenibacillus sonchi: genome-based metrics improve bacterial taxonomic classification. Front Microbiol 8:1849

    Article  PubMed  PubMed Central  Google Scholar 

  • Seldin L, Van Elsas JD, Penido EG (1983) Bacillus nitrogen fixers from Brazilian soils. Plant Soil 70:243–255

    Article  Google Scholar 

  • Silva FA (1996) The ASSISTAT software: statistical assistance. In: International conference on computers in agriculture, vol 6. American Society of Agricultural Engineers, Cancun, pp 294–298

  • Simon J (2002) Enzymology and bioenergetics of respiratory nitrite ammonification. FEMS Microbiol Rev 26:285–309

    Article  CAS  PubMed  Google Scholar 

  • Souza RD, Ambrosini A, Passaglia LM (2015) Plant growth-promoting bacteria as inoculants in agricultural soils. Genet Mol Biol 38(4):401–419

    Article  PubMed  PubMed Central  Google Scholar 

  • Tamura K, Stecher G, Peterson D, Filipski A, Kumar S (2013) MEGA6: molecular evolutionary genetics analysis version 6.0. Mol Biol Evol 30(12):2725–2729

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Traiwan J, Park MH, Kim W (2011) Paenibacillus puldeungensis sp. nov., isolated from a grassy sandbank. Int J Syst Evol Microbiol 61(3):670–673

    Article  CAS  PubMed  Google Scholar 

  • Vos PD, Ludwig W, Schleifer KH, Whitman WB (2009) Paenibacillaceae fam. nov. In: Whitman WB, Rainey F, Kämpfer P, Trujillo M, Chun J, Vos PD, Hedlund B, Dedysh S (eds) Bergey’s manual of systematic of archaea and bacteria, 2nd edition, vol 3. Springer, New York, p. 269

    Google Scholar 

  • Wang LY, Li J, Li QX, Chen SF (2013) Paenibacillus beijingensis sp. nov., a nitrogen-fixing species isolated from wheat rhizosphere soil. Antonie Van Leeuwenhoek 104(5):675–683

    Article  CAS  PubMed  Google Scholar 

  • Welsh A, Chee-Sanford J, Connor L, Löffler F, Sanford R (2014) Refined NrfA phylogeny improves PCR-based nrfA gene detection. Appl Environ Microbiol 80(7):2110–2119

    Article  PubMed  PubMed Central  Google Scholar 

  • Xie JB, Bai LQ, Wang LY, Chen SF (2012) Phylogeny of 16S rRNA and nifH genes and regulation of nitrogenase activity by oxygen and ammonium in the genus Paenibacillus. Microbiology 81(6):702–709

    Article  CAS  Google Scholar 

  • Xie JB, Du Z, Bai L, Tian C, Zhang Y, Xie JY, Wang T, Liu X, Chen X, Cheng Q, Chen S, Li J (2014) Comparative genomic analysis of N2-fixing and non-N2-fixing Paenibacillus spp.: organization, evolution and expression of the nitrogen fixation genes. PLoS Genet 10(3):e1004231

    Article  PubMed  PubMed Central  Google Scholar 

  • Yoon SH, Ha SM, Kwon S, Lim J, Kim Y, Seo H, Chun J (2017) Introducing EzBioCloud: a taxonomically united database of 16S rRNA and whole genome assemblies. Int J Syst Evol Microbiol 67:1613–1617

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

Authors acknowledge Dr. Emanuel M. de Souza and Dr. Fábio de Oliveira Pedrosa (Department of Biochemistry and Molecular Biology, Polytechnic Center, Federal University of Paraná, Curitiba, Brazil) by sequencing of genomes. Authors are thankful to Prof. Tiziano Dalla Rosa (Department of Applied Chemistry, Faculty of Chemistry, Pontifical Catholic University of Rio Grande do Sul, Porto Alegre, Brazil) and Dr. José Evandro Saraiva Pereira (Center for Biotechnology, Federal University of Rio Grande do Sul, Porto Alegre, Brazil) by freeze-drying of Paenibacillus cultures. This work was carried out under the financial support of the Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq, Brazil), Grant No. 440414/2014-8.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Luciane Maria Pereira Passaglia.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 579 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ambrosini, A., Sant’Anna, F.H., Heinzmann, J. et al. Paenibacillus helianthi sp. nov., a nitrogen fixing species isolated from the rhizosphere of Helianthus annuus L.. Antonie van Leeuwenhoek 111, 2463–2471 (2018). https://doi.org/10.1007/s10482-018-1135-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10482-018-1135-4

Keywords

Navigation