Skip to main content
Log in

Regulator ThnR and the ThnDE ABC transporter proteins confer autoimmunity to thurincin H in Bacillus thuringiensis

  • ORIGINAL PAPER
  • Published:
Antonie van Leeuwenhoek Aims and scope Submit manuscript

Abstract

The structural gene that encodes thurincin H, a bacteriocin produced by Bacillus thuringiensis, is harboured in a genetic cluster (thnP, E, D, R, A1, A2, A3, B, T, I) that controls its synthesis, modification, secretion and autoimmunity. The specific genes in the cassette that confer immunity in B. thuringiensis to thurincin H are unknown. To identify these immunity determinants, we generated constructs that were used to transform a natural thurincin H-sensitive B. thuringiensis strain (i.e. Btk 404), and resistance or susceptibility to the bacteriocin in resultant recombinants was evaluated. When Btk 404/pHT3101-ThnARDEP and Btk 404/pHT3101-ThnABTI were exposed to thurincin H, immunity was demonstrated by the former only, indicating that ThnI does not play a role in resistance to the bacteriocin as previously proposed. Furthermore, we generated different sub-cassettes under the control of divergent promoters pThnR and pThur of the thurincin H locus, and pChi, and using the green fluorescent protein gene as reporter, which demonstrated that all promoters were recognised by ThnR, except pChi. We show for the first time that the small operon composed of thnR, thnD and thnE is required for immunity of B. thuringiensis to thurincin H, and thnI is not necessary for this response.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • AlKhatib Z, Lagedroste M, Zaschke J, Wagner M, Abts A, Fey I, Kleinschrodt D, Smits SH (2014) The C-terminus of nisin is important for the ABC transporter NisFEG to confer immunity in Lactococcus lactis. Microbiologyopen 3:752–763

    Article  CAS  Google Scholar 

  • Arantes O, Lereclus D (1991) Construction of cloning vectors for Bacillus thuringiensis. Gene 108:115–119

    Article  CAS  Google Scholar 

  • Babasaki K, Takao T, Shimonishi Y, Kurahashi K (1985) Subtilosin A, a new antibiotic peptide produced by Bacillus subtilis 168: isolation, structural analysis, and biogenesis. J Biochem 98:585–603

    Article  CAS  Google Scholar 

  • Barboza-Corona JE, Vázquez-Acosta H, Bideshi DK, Salcedo-Hernández R (2007) Bacteriocin-like inhibitor substances produced by Mexican strains of Bacillus thuringiensis. Arch Microbiol 187:117–126

    Article  CAS  Google Scholar 

  • Barboza-Corona JE, Delgadillo-Ángeles JL, Castañeda-Ramírez JC, Barboza-Pérez UE, Casados-Vázquez LE, Bideshi DK, del Rincón-Castro MC (2014) Bacillus thuringiensis subsp. kurstaki HD1 as a factory to synthesize alkali-labile ChiA74∆sp chitinase inclusions, Cry crystals and spores for applied use. Microb Cell Fact 13:15. https://doi.org/10.1186/1475-2859-13-15

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Casados-Vázquez LE, Bideshi DK, Barboza-Corona JE (2017) The thnR gene is a negative transcription regulator of the thurincin H genetic cassette in Bacillus thuringiensis subsp. morrisoni. Arch Microbiol 199:385–390

    Article  Google Scholar 

  • Christ NA, Bochmann S, Gottstein D, Duchardt-Ferner E, Hellmich UA, D¨sterhus S, Kötter P, Güntert P, Entian K-D, Wöhnert J (2012) The first structure of a lantibiotic immunity protein, SpaI from Bacillus subtilis, reveals a novel fold. J Biol Chem 287:35286–35298

    Article  CAS  Google Scholar 

  • Cordeiro JX, Laia ML, Goncalves JF, Bergamasco VB, Lemos MVF (2011) Bacillus thuringiensis mutant increase activity against Spodoptera frugiperda larvae. Aust J Basic Appl Sci 5:521–531

    CAS  Google Scholar 

  • De la Fuente-Salcido N, Alanís-Guzmán MG, Bideshi DK, Salcedo-Hernández R, Bautista-Justo M, Barboza-Corona JE (2008) Enhanced synthesis and antimicrobial activities of bacteriocins produced by Mexican strains of Bacillus thuringiensis. Arch Microbiol 190:633–640

    Article  Google Scholar 

  • De la Fuente-Salcido NM, Casados-Vázquez LE, Barboza-Corona JE (2013) Bacteriocins of Bacillus thuringiensis can expand the potential of this bacterium to other areas rather than limit its use only as microbial insecticide. Can J Microbiol 59:515–522

    Article  Google Scholar 

  • Del Sal G, Manfioletti G, Schneider C (1988) A one-tube plasmid DNA mini-preparation suitable for sequencing. Nucleic Acids Res 16:9878

    Article  Google Scholar 

  • Diederichs K, Diez J, Greller G, Müller C, Breed J, Schnell C, Vonrhein C, Boos W, Welte W (2000) Crystal structure of MalK, the ATPase subunit of the trehalose/maltose ABC transporter of the archaeon Thermococcus litoralis. EMBO J 19:5951–5961

    Article  CAS  Google Scholar 

  • Draper LA, Grainger K, Deegan LH, Cotter PD, Hill C, Ross RP (2009) Cross-immunity and immune mimicry as mechanism of resistance to the lantibiotic lacticin 3147. Mol Microbiol 71:1043–1054

    Article  CAS  Google Scholar 

  • Duarte AFS, Ceotto-Vigoder H, Barrias ES, Souto-Padrón TCBS, Nes IF, Bastos MDCF (2018) Hyicin 4244, the first sactibiotic described in staphylococci, exhibits an anti-staphylococcal biofilm activity. Int J Antimicrob Agents. https://doi.org/10.1016/j.ijantimicag.2017.06.025

    Article  PubMed  Google Scholar 

  • Engelke G, Gutowski-Eckel Z, Kiesau P, Siegers K, Hammelmann M, Entian K-D (1994) regulation of nisin biosynthesis and immunity in Lactococcus lactis. Appl Environ Microbiol 60:814–825

    CAS  PubMed  PubMed Central  Google Scholar 

  • Estruch JJ, Warren GW, Mullins MA, Nye GJ, Craig JA, Koziel MG (1996) Vip3A, a novel Bacillus thuringiensis vegetative insecticidal protein with a wide spectrum of activities against lepidopteran insects. Proc Nat Acad Sci USA 93:5389–5394

    Article  CAS  Google Scholar 

  • Fagundes PC, Ceotto H, Potter A, de Paiva Vasconcelon, Brito MA, Bredem D, Nes IF, Bastos Mdo C (2017) Hyicin 3682, a bioactive peptide produced by Staphylococcus hyicus 3682 with potential applications for food preservation. Res Microbiol 162:1052–1059

    Article  Google Scholar 

  • Gaudet R, Wiley DC (2001) Structure of the ABC ATPase domain of human TAP1, the transporter associated with antigen processing. EMBO J 20:4964–4972

    Article  CAS  Google Scholar 

  • Gebhard S (2012) ABC transporters of antimicrobial peptides in Firmicutes bacteria–phylogeny, function and regulation. Mol Microbiol 86:1295–1317

    Article  CAS  Google Scholar 

  • Görke B (2012) Killing two birds with one stone: an ABC transporter regulates gene expression through sequestration of a transcriptional regulator at the membrane. Mol Microbiol 85:597–601

    Article  Google Scholar 

  • Hacker C, Christ NA, Duchardt-Ferner E, Korn S, Göbl C, Bernirger L, Düsterhus S, Hellmich UA, Madl T, Kötter P, Entian K-D, Wöhnert J (2015) The solution structure of the lantibiotic immunity protein NisI and its interaction with nisin. J Biol Chem 290:28869–28886

    Article  CAS  Google Scholar 

  • Halami PM, Stein T, Chandrashekar A, Entian K-D (2010) Maturation and processing of SpaI, the lipoprotein involved in subtilin immunity in Bacillus subtilis ATCC 6633. Microbiol Res 165:183–189

    Article  CAS  Google Scholar 

  • Hillerich B, Westpheling J (2006) A new GntR family transcriptional regulator in Streptomyces coelicolor is required for morphogenesis and antibiotic production and controls transcription of an ABC transporter in response to carbon source. J Bacterio. 188:7477–7487

    Article  CAS  Google Scholar 

  • Jouzani GS, Valijanian E, Sharafi R (2017) Bacillus thuringiensis: a successful insecticide with new environmental features and tidings. Appl Microbiol Biotechnol 101:2691–2711

    Article  CAS  Google Scholar 

  • Kelley LA, Mezulis S, Yates CM, Wass MN, Sternberg MJ (2015) The Phyre web portal for protein modeling, prediction and analysis. Nat Protoc 10(6):845

    Article  CAS  Google Scholar 

  • Krogh A, Larsson B, Von Heijne G, Sonnhammer EL (2001) Predicting transmembrane protein topology with a hidden Markov model: application to complete genomes. J Mol Biol 305:567–580

    Article  CAS  Google Scholar 

  • Lee H, Churey JJ, Worobo RW (2009) Biosynthesis and transcriptional analysis of thurincin H, a tandem repeated bacteriocin genetic locus, produced by Bacillus thuringiensis SF361. FEMS Microbiol Lett 299:205–213

    Article  CAS  Google Scholar 

  • Lubelski J, Mazurkiewicz P, van Merkerk R, Konings WN, Driessen AJM (2004) ydaG and ydbA of Lactococcus lactis encode a heterodimeric ATP-binding cassette-type multidrug transporter. J Biol Chem 279:34449–34455

    Article  CAS  Google Scholar 

  • Majchrzykiewicz JA, Kuipers OP, Bijlsma JJ (2010) Generic and specific adaptive responses of Streptococcus pneumoniae to challenge with three distinct antimicrobial peptides, bacitracin, LL-37, and nisin. Antimicrob Agents Chemother 54:440–451

    Article  CAS  Google Scholar 

  • Martin NI, Sprules T, Carpenter MR, Cotter PD, Hill C, Ross RP, Vederas JC (2004) Structural characterization of lacticin 3147, a two-peptide lantibiotic with synergistic activity. Biochem 43:3049–3056

    Article  CAS  Google Scholar 

  • Mathur H, O’Connor PM, Cotter PD, Hill C, Ross RP (2014) Heterologous expression of thuricin CD immunity genes in Listeria monocytogenes. Antimicrob Agents Chemother 58:3421–3428

    Article  Google Scholar 

  • Matsuo M, Dabrowski M, Ueda K, Ashcroft FM (2002) Mutations in the linker domain of NBD2 of SUR inhibit transduction but not nucleotide binding. EMBO J 21:4250–4258

    Article  CAS  Google Scholar 

  • Novichkov PS, Kazakov AE, Ravcheev DA, Leyn SA, Kovaleva GY, Sutormin RA, Rodionov DA (2010) Thuricin CD, a posttranslationally modified bacteriocin with a narrow spectrum of activity against Clostridium difficile. Proc Nat Acad Sci USA 107:9352–9357

    Article  Google Scholar 

  • Rea MC, Sit CS, Clayton E, O’Connor PM, Whittal RM, Zheng J, Veredas JC, Ross P, Hill C (2010) Thuricin CD, a posttranslationally modified bacteriocin with a narrow spectrum of activity against Clostridium difficile. Proc Nat Acad Sci USA 107:9352–9357

    Article  CAS  Google Scholar 

  • Rigali S, Derouaux A, Giannotta F, Dusart J (2002) Subdivision of the helix-turn-helix GntR family of bacterial regulators in the FadR, HutC, MocR, and YtrA subfamilies. J Biol Chem 277:12507–12515

    Article  CAS  Google Scholar 

  • Rost B, Yachdav G, Liu J (2004) The predictprotein server. Nucleic Acids Res 32((suppl_2)):W321–W326

    Article  CAS  Google Scholar 

  • Salazar-Marroquín EL, Galán-Wong LJ, Moreno-Medina VR, Reyes-López MÁ, Pereyra-Alférez B (2016) Bacteriocins synthesized by Bacillus thuringiensis: generalities and potential applications. Rev Med Microbiol 27:95–101

    Article  Google Scholar 

  • Sambrook J, Fritsch EF, Maniatis T (1989) Molecular cloning: a laboratory manual, 2nd edn. CSHL Press, New York

    Google Scholar 

  • Saraste M, Sibbald PR, Wittinghofer A (1990) 9 The P-loop—a common motif in ATP-and GTP-binding proteins. Trends Biochem Sci 15:430–434

    Article  Google Scholar 

  • Schägger H (2006) Tricine-sds-page. Nat Protoc 1:16

    Article  Google Scholar 

  • Schnepf E, Crickmore N, Van Rie J, Lereclus D, Baum J, Feitelson J, Zeigler DR, Dean DH (1998) Bacillus thuringiensis and its pesticidal crystal proteins. Microbiol Mol Biol Rev 62:775–806

    CAS  PubMed  PubMed Central  Google Scholar 

  • Siegers K, Entian K-D (1995) Genes involved in immunity to the lantibiotic nisin produced by Lactococcus lactis 6F3. Appl Environ Microbiol 61:1082–1089

    CAS  PubMed  PubMed Central  Google Scholar 

  • Stein T, Borchert S, Conrad B, Feesche J, Hofemeister B, Hofemeister J, Entian K-D (2002) Two different lantibiotic-like peptides originate from the ericin gene cluster of Bacillus subtilis A1/3. J Bacteriol 184:1703–1711

    Article  CAS  Google Scholar 

  • Stein T, Heinzmann S, Solovieva I, Entian KD (2003) Function of Lactococcus lactis nisin immunity genes nisI and nisFEG after coordinated expression in the surrogate host Bacillus subtilis. J Biol Chem 278:89–94

    Article  CAS  Google Scholar 

  • Stein T, Düsterhus S, Stroh A, Entian K-D (2004) Subtilosin production by two Bacillus subtilis subspecies and variance of the sbo-alb cluster. Appl Environ Microbiol 70:2349–2353

    Article  CAS  Google Scholar 

  • Stein T, Heinzmann S, Düsterhus S, Borchert S, Entian KD (2005) Expression and functional analysis of the subtilin immunity genes spaIFEG in the subtilin-sensitive host Bacillus subtilis MO1099. J Bacteriol 187:822–828

    Article  CAS  Google Scholar 

  • Tusnady GE, Simon I (2001) The HMMTOP transmembrane topology prediction server. Bioinfomatics 17:849–850

    Article  CAS  Google Scholar 

  • Walker JE, Saraste M, Runswick MJ, Gay NJ (1982) Distantly related sequences in the alpha-and beta-subunits of ATP synthase, myosin, kinases and other ATP-requiring enzymes and a common nucleotide binding fold. EMBO J 1:945–951

    Article  CAS  Google Scholar 

  • Wang G, Manns DC, Churey JJ, Worobo RW (2014) Naturally sensitive Bacillus thuringiensis EG10368 produces thurincin H and acquires immunity after heterologous expression of the one-step-amplified thurincin H gene cluster. J Dairy Sci 97:4115–4119

    Article  CAS  Google Scholar 

  • Wieckowski BM, Hegemann JD, Mielcarek A, Boss L, Burghaus O, Marahiel MA (2015) The PqqD homologous domain of the radical SAM enzyme ThnB is required for thioether bond formation during thurincin H maturation. FEBS Lett 589:1802–1806

    Article  CAS  Google Scholar 

  • Xin B, Zheng J, Liu H, Junhua L, Ruan L, Peng D, Sajid M, Sun M (2016) Thusin, a novel two-component lantibiotic with potent antimicrobial activity against several gram-positive pathogens. Front Microbiol 7:1–12

    Article  Google Scholar 

  • Yin X, Yang J, Xiao F, Yang Y, Shen HB (2018) MemBrain: an easy-to-use online webserver for transmembrane protein structure prediction. Nano Micro Lett 10:2. https://doi.org/10.1007/s40820-017-0156-2

    Article  Google Scholar 

Download references

Acknowledgements

Luz E. Casados-Vázquez is a Young Associate Research supported by “Consejo Nacional de Ciencia y Tecnología (CONACYT), México (Grant 269). This study was partially supported by Grant SEP-CONACyT (258220) to J.E. Barboza-Corona. We appreciate the technical assistance of Dr. Rubén Salcedo-Hernández from the Universidad de Guanajuato, México.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to José E. Barboza-Corona.

Ethics declarations

Conflict of interest

The authors declare no conflicts of interest.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 459 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Casados-Vázquez, L.E., Bideshi, D.K. & Barboza-Corona, J.E. Regulator ThnR and the ThnDE ABC transporter proteins confer autoimmunity to thurincin H in Bacillus thuringiensis. Antonie van Leeuwenhoek 111, 2349–2360 (2018). https://doi.org/10.1007/s10482-018-1124-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10482-018-1124-7

Keywords

Navigation