Skip to main content

Advertisement

Log in

Identification of a gene involved in the biosynthesis pathway of the terminal sugar of the archaellin N-linked tetrasaccharide in Methanococcus maripaludis

  • Original Paper
  • Published:
Antonie van Leeuwenhoek Aims and scope Submit manuscript

Abstract

In Methanococcus maripaludis, the three archaellins which comprise the archaellum are modified at multiple sites with an N-linked tetrasaccharide with the structure of Sug-4-β-ManNAc3NAmA6Thr-4-β-GlcNAc3NAcA-3-β-GalNAc, where Sug is a unique sugar (5S)-2-acetamido-2,4-dideoxy-5-O-methyl-l-erythro-hexos-5-ulo-1,5-pyranose, so far found exclusively in this species. In this study, a six-gene cluster mmp10891094, neighboring one of the genomic regions already known to contain genes involved with the archaellin N-glycosylation pathway, was examined for its potential involvement in the archaellin N-glycosylation or sugar biosynthesis pathway. The co-transcription of these six genes was demonstrated by RT-PCR. Mutants carrying an in-frame deletion in mmp1090, mmp1091 or mmp1092 were successfully generated. The Δmmp1090 deletion mutant was archaellated when examined by electron microscopy and mass spectrometry analysis of purified archaella showed that the archaellins were modified with a truncated N-glycan in which the terminal sugar residue and the threonine linked to the third sugar residue were missing. Both gene annotation and bioinformatic analyses indicate that MMP1090 is a UDP-glucose 4-epimerase, suggesting that the unique terminal sugar of the archaellin N-glycan might be synthesised from UDP-glucose or UDP-N-acetylglucosamine with an essential early step in synthesis catalysed by MMP1090. In contrast, no detectable phenotype related to archaellin glycosylation was observed in mutants deleted for either mmp1091 or mmp1092 while attempts to delete mmp1089, mmp1093 and mmp1094 were unsuccessful. Based on its demonstrated involvement in the archaellin N-glycosylation pathway, we designated mmp1090 as aglW.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Aebi M (2013) N-linked protein glycosylation in the ER. Biochim Biophys Acta 1833:2430–2437

    Article  CAS  PubMed  Google Scholar 

  • Albers SV, Jarrell KF (2015) The archaellum:how archaea swim. Front Microbiol 6:23

    Article  PubMed Central  PubMed  Google Scholar 

  • Balch WE, Fox GE, Magrum LJ, Woese CR, Wolfe RS (1979) Methanogens: reevaluation of a unique biological group. Microbiol Rev 43:260–296

    CAS  PubMed Central  PubMed  Google Scholar 

  • Bardy SL, Jarrell KF (2003) Cleavage of preflagellins by an aspartic acid signal peptidase is essential for flagellation in the archaeon Methanococcus voltae. Mol Microbiol 50:1339–1347

    Article  CAS  PubMed  Google Scholar 

  • Bardy SL, Mori T, Komoriya K, Aizawa S, Jarrell KF (2002) Identification and localization of flagellins FlaA and FlaB3 within flagella of Methanococcus voltae. J Bacteriol 184:5223–5233

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Bernatchez S, Szymanski CM, Ishiyama N, Li J, Jarrell HC, Lau PC, Berghuis AM, Young NM, Wakarchuk WW (2005) A single bifunctional UDP-GlcNAc/Glc 4-epimerase supports the synthesis of three cell surface glycoconjugates in Campylobacter jejuni. J Biol Chem 280:4792–4802

    Article  CAS  PubMed  Google Scholar 

  • Chaban B, Voisin S, Kelly J, Logan SM, Jarrell KF (2006) Identification of genes involved in the biosynthesis and attachment of Methanococcus voltae N-linked glycans: insight into N-linked glycosylation pathways in Archaea. Mol Microbiol 61:259–268

    Article  CAS  PubMed  Google Scholar 

  • Chaban B, Ng SY, Kanbe M, Saltzman I, Nimmo G, Aizawa SI, Jarrell KF (2007) Systematic deletion analyses of the fla genes in the flagella operon identify several genes essential for proper assembly and function of flagella in the archaeon, Methanococcus maripaludis. Mol Microbiol 66:596–609

    Article  CAS  PubMed  Google Scholar 

  • Chung SK, Ryu SI, Lee SB (2012) Characterization of UDP-glucose 4-epimerase from Pyrococcus horikoshii: regeneration of UDP to produce UDP-galactose using two-enzyme system with trehalose. Bioresour Technol 110:423–429

    Article  CAS  PubMed  Google Scholar 

  • Cohen-Rosenzweig C, Yurist-Doutsch S, Eichler J (2012) AglS, a novel component of the Haloferax volcanii N-glycosylation pathway, is a dolichol phosphate-mannose mannosyltransferase. J Bacteriol 194:6909–6916

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Cunneen MM, Reeves PR (2008) Membrane topology of the Salmonella enterica serovar Typhimurium Group B O-antigen translocase Wzx. FEMS Microbiol Lett 287:76–84

    Article  CAS  PubMed  Google Scholar 

  • Ding Y, Jones GM, Uchida K, Aizawa SI, Robotham A, Logan SM, Kelly J, Jarrell KF (2013) Identification of genes involved in the biosynthesis of the third and fourth sugars of the Methanococcus maripaludis archaellin N-linked tetrasaccharide. J Bacteriol 195:4094–4104

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Ding Y, Uchida K, Aizawa SI, Murphy K, Berezuk A, Khursigara CM, Chong JPJ, Jarrell KF (2015) Effects of N-glycosylation site removal in archaellins on the assembly and function of archaella in Methanococcus maripaludis. PLoS One 10:e0116402

    Article  PubMed Central  PubMed  Google Scholar 

  • Eichler J (2013) Extreme sweetness: protein glycosylation in Archaea. Nature Rev Microbiol 11:151–156

    Article  CAS  Google Scholar 

  • Eichler J, Jarrell K, Albers S (2013) A proposal for the naming of N-glycosylation pathway components in Archaea. Glycobiology 23:620–621

    Article  Google Scholar 

  • Geerlof A, Lewendon A, Shaw WV (1999) Purification and characterization of phosphopantetheine adenylyltransferase from Escherichia coli. J Biol Chem 274:27105–27111

    Article  CAS  PubMed  Google Scholar 

  • Genschel U (2004) Coenzyme a biosynthesis: reconstruction of the pathway in archaea and an evolutionary scenario based on comparative genomics. Mol Biol Evol 21:1242–1251

    Article  CAS  PubMed  Google Scholar 

  • Gruyer S, Legin E, Bliard C, Ball S, Duchiron F (2002) The endopolysaccharide metabolism of the hyperthermophilic archeon Thermococcus hydrothermalis: polymer structure and biosynthesis. Curr Microbiol 44:206–211

    Article  CAS  PubMed  Google Scholar 

  • Henrissat B, Deleury E, Coutinho PM (2002) Glycogen metabolism loss: a common marker of parasitic behaviour in bacteria? Trends Genet 18:437–440

    Article  CAS  PubMed  Google Scholar 

  • Horcajada C, Guinovart JJ, Fita I, Ferrer JC (2006) Crystal structure of an archaeal glycogen synthase: insights into oligomerization and substrate binding of eukaryotic glycogen synthases. J Biol Chem 281:2923–2931

    Article  CAS  PubMed  Google Scholar 

  • Igura M, Maita N, Obita T, Kamishikiryo J, Maenaka K, Kohda D (2007) Purification, crystallization and preliminary X-ray diffraction studies of the soluble domain of the oligosaccharyltransferase STT3 subunit from the thermophilic archaeon Pyrococcus furiosus. Acta Crystallogr, Sect F: Struct Biol Cryst Commun 63:798–801

    Article  CAS  Google Scholar 

  • Ishiyama N, Creuzenet C, Lam JS, Berghuis AM (2004) Crystal structure of WbpP, a genuine UDP-N-acetylglucosamine 4-epimerase from Pseudomonas aeruginosa: substrate specificity in udp-hexose 4-epimerases. J Biol Chem 279:22635–22642

    Article  CAS  PubMed  Google Scholar 

  • Islam ST, Lam JS (2013) Wzx flippase-mediated membrane translocation of sugar polymer precursors in bacteria. Environ Microbiol 15:1001–1015

    Article  CAS  PubMed  Google Scholar 

  • Islam ST, Taylor VL, Qi M, Lam JS (2010) Membrane topology mapping of the O-antigen flippase (Wzx), polymerase (Wzy), and ligase (WaaL) from Pseudomonas aeruginosa PAO1 reveals novel domain architectures. Mbio 1:3

    Article  Google Scholar 

  • Jarrell KF, Albers SV (2012) The archaellum: an old motility structure with a new name. Trends Microbiol 20:307–312

    Article  CAS  PubMed  Google Scholar 

  • Jarrell KF, Jones GM, Kandiba L, Nair DB, Eichler J (2010) S-layer glycoproteins and flagellins: reporters of archaeal posttranslational modifications. Archaea. doi:10.1155/2010/612948

    PubMed Central  PubMed  Google Scholar 

  • Jarrell KF, Ding Y, Meyer BH, Albers SV, Kaminski L, Eichler J (2014) N-Linked glycosylation in Archaea: a structural, functional, and genetic analysis. Microbiol Mol Biol Rev 78:304–341

    Article  PubMed Central  PubMed  Google Scholar 

  • Jones GM, Wu J, Ding Y, Uchida K, Aizawa S, Robotham A, Logan SM, Kelly J, Jarrell KF (2012) Identification of genes involved in the acetamidino group modification of the flagellin N-linked glycan of Methanococcus maripaludis. J Bacteriol 194:2693–2702

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Jörnvall H, Persson B, Krook M, Atrian S, Gonzàlez-Duarte R, Jeffery J, Ghosh D (1995) Short-chain dehydrogenases/reductases (SDR). Biochemistry 34:6003–6013

    Article  PubMed  Google Scholar 

  • Kallberg Y, Oppermann U, Jörnvall H, Persson B (2002) Short-chain dehydrogenases/reductases (SDRs). Eur J Biochem 269:4409–4417

    Article  CAS  PubMed  Google Scholar 

  • Kaminski L, Guan Z, Abu-Qarn M, Konrad Z, Eichler J (2012) AglR is required for addition of the final mannose residue of the N-linked glycan decorating the Haloferax volcanii S-layer glycoprotein. Biochim Biophys Acta 1820:1664–1670

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Kaminski L, Lurie-Weinberger MN, Allers T, Gophna U, Eichler J (2013) Phylogenetic- and genome-derived insight into the evolution of N-glycosylation in Archaea. Mol Phylogenet Evol 68:327–339

    Article  CAS  PubMed  Google Scholar 

  • Kelly J, Logan SM, Jarrell KF, Vandyke DJ, Vinogradov E (2009) A novel N-linked flagellar glycan from Methanococcus maripaludis. Carbohydr Res 344:648–653

    Article  CAS  PubMed  Google Scholar 

  • Kupke T, Schwarz W (2006) 4′-phosphopantetheine biosynthesis in Archaea. J Biol Chem 281:5435–5444

    Article  CAS  PubMed  Google Scholar 

  • Lie TJ, Wood GE, Leigh JA (2005) Regulation of nif expression in Methanococcus maripaludis: roles of the euryarchaeal repressor NrpR, 2-oxoglutarate, and two operators. J Biol Chem 280:5236–5241

    Article  CAS  PubMed  Google Scholar 

  • Liu D, Cole RA, Reeves PR (1996) An O-antigen processing function for Wzx (RfbX): a promising candidate for O-unit flippase. J Bacteriol 178:2102–2107

    CAS  PubMed Central  PubMed  Google Scholar 

  • Marolda CL, Li B, Lung M, Yang M, Hanuszkiewicz A, Rosales AR, Valvano MA (2010) Membrane topology and identification of critical amino acid residues in the Wzx O-antigen translocase from Escherichia coli O157:H4. J Bacteriol 192:6160–6171

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Matsumoto S, Shimada A, Kohda D (2013) Crystal structure of the C-terminal globular domain of the third paralog of the Archaeoglobus fulgidus oligosaccharyltransferases. BMC Struct Biol 13:11

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Mizanur RM, Zea CJ, Pohl NL (2004) Unusually broad substrate tolerance of a heat-stable archaeal sugar nucleotidyltransferase for the synthesis of sugar nucleotides. J Am Chem Soc 126:15993–15998

    Article  CAS  PubMed  Google Scholar 

  • Moore BC, Leigh JA (2005) Markerless mutagenesis in Methanococcus maripaludis demonstrates roles for alanine dehydrogenase, alanine racemase, and alanine permease. J Bacteriol 187:972–979

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Nair DB, Uchida K, Aizawa SI, Jarrell KF (2014) Genetic analysis of a type IV pili-like locus in the archaeon Methanococcus mariplaudis. Arch Microbiol 196:179–191

    Article  CAS  PubMed  Google Scholar 

  • Namboori SC, Graham DE (2008a) Enzymatic analysis of uridine diphosphate N-acetyl-D-glucosamine. Anal Biochem 301:94–100

    Article  Google Scholar 

  • Namboori SC, Graham DE (2008b) Acetamido sugar biosynthesis in the Euryarchaea. J Bacteriol 190:2987–2996

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Ng SYM, Wu J, Nair DB, Logan SM, Robotham A, Tessier L, Kelly JF, Uchida K, Aizawa S-, Jarrell KF (2011) Genetic and mass spectrometry analysis of the unusual type IV-like pili of the archaeon Methanococcus maripaludis. J Bacteriol 193:804–814

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Nothaft H, Szymanski CM (2010) Protein glycosylation in bacteria: sweeter than ever. Nat Rev Microbiol 8:765–778

    Article  CAS  PubMed  Google Scholar 

  • Nothaft H, Szymanski CM (2013) Bacterial protein N-glycosylation: new perspectives and applications. J Biol Chem 288:6912–6920

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Oppermann U, Filling C, Hult M, Shafqat N, Wu X, Lindh M, Shafqat J, Nordling E, Kallberg Y, Persson B, Jörnvall H (2003) Short-chain dehydrogenases/reductases (SDR): the 2002 update. Chem Biol Interact 143–144:247–253

    Article  PubMed  Google Scholar 

  • Persson B, Kallberg Y (2013) Classification and nomenclature of the superfamily of short-chain dehydrogenases/reductases (SDRs). Chem Biol Interact 202:111–115

    Article  CAS  PubMed  Google Scholar 

  • Sakuraba H, Kawai T, Yoneda K, Ohshima T (2011) Crystal structure of UDP-galactose 4-epimerase from the hyperthermophilic archaeon Pyrobaculum calidifontis. Arch Biochem Biophys 512:126–134

    Article  CAS  PubMed  Google Scholar 

  • Sarmiento F, Mrázek J, Whitman WB (2013) Genome-scale analysis of gene function in the hydrogenotrophic methanogenic archaeon Methanococcus maripaludis. Proc Natl Acad Sci U S A 110:4726–4731

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Siu S, Robotham A, Logan SM, Kelly JF, Uchida K, Aizawa SI, Jarrell KF (2015) Evidence that biosynthesis of the second and third sugars of the archaellin tetrasaccharide in the archaeon Methanococcus maripaludis occurs by the same pathway used by Pseudomonas aeruginosa to make a di-N-acetylated sugar. J Bacteriol 197:1668–1680

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Sonnhammer EL, von Heijne G, Krogh A (1998) A hidden Markov model for predicting transmembrane helices in protein sequences. Proc Int Conf Intell Syst Mol Biol 6:175–182

    CAS  PubMed  Google Scholar 

  • Thoden JB, Wohlers TM, Fridovich-Keil JL, Holden HM (2000) Crystallographic evidence for Tyr 157 functioning as the active site base in human UDP-galactose 4-epimerase. Biochemistry 39:5691–5701

    Article  CAS  PubMed  Google Scholar 

  • Towbin H, Staehelin T, Gordon J (1979) Electrophoretic transfer of proteins from polyacrylamide gels to nitrocellulose sheets: procedure and some applications. Proc Natl Acad Sci U S A 76:4350–4354

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Tumbula DL, Makula RA, Whitman WB (1994) Transformation of Methanococcus maripaludis and identification of a PstI-like restriction system. FEMS Microbiol Lett 121:309–314

    Article  CAS  Google Scholar 

  • VanDyke DJ, Wu J, Ng SY, Kanbe M, Chaban B, Aizawa SI, Jarrell KF (2008) Identification of putative acetyltransferase gene, MMP0350, which affects proper assembly of both flagella and pili in the archaeon Methanococcus maripaludis. J Bacteriol 190:5300–5307

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Vandyke DJ, Wu J, Logan SM, Kelly JF, Mizuno S, Aizawa SI, Jarrell KF (2009) Identification of genes involved in the assembly and attachment of a novel flagellin N-linked tetrasaccharide important for motility in the archaeon Methanococcus maripaludis. Mol Microbiol 72:633–644

    Article  CAS  PubMed  Google Scholar 

  • Xayarath B, Yother J (2007) Mutations blocking side chain assembly, polymerization, or transport of a Wzy-dependent Streptococcus pneumoniae capsule are lethal in the absence of suppressor mutations and can affect polymer transfer to the cell wall. J Bacteriol 189:3369–3381

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Yu JP, Ladapo J, Whitman WB (1994) Pathway of glycogen metabolism in Methanococcus maripaludis. J Bacteriol 176:325–332

    CAS  PubMed Central  PubMed  Google Scholar 

  • Yurist-Doutsch S, Abu-Qarn M, Battaglia F, Morris HR, Hitchen PG, Dell A, Eichler J (2008) AglF, aglG and aglI, novel members of a gene island involved in the N-glycosylation of the Haloferax volcanii S-layer glycoprotein. Mol Microbiol 69:1234–1245

    Article  CAS  PubMed  Google Scholar 

  • Zhang Z, Tsujimura M, Akutsu J, Sasaki M, Tajima H, Kawarabayasi Y (2005) Identification of an extremely thermostable enzyme with dual sugar-1-phosphate nucleotidylyltransferase activities from an acidothermophilic archaeon, Sulfolobus tokodaii strain 7. J Biol Chem 280:9698–9705

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was funded by the National Research Council of Canada (SML, JFK) and by a Discovery Grant from the Natural Sciences and Engineering Research Council of Canada (NSERC) (to KFJ). Y.D. is sponsored by China Scholarship Council (2010622028).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to John F. Kelly or Ken F. Jarrell.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ding, Y., Jones, G.M., Brimacombe, C. et al. Identification of a gene involved in the biosynthesis pathway of the terminal sugar of the archaellin N-linked tetrasaccharide in Methanococcus maripaludis . Antonie van Leeuwenhoek 109, 131–148 (2016). https://doi.org/10.1007/s10482-015-0615-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10482-015-0615-z

Keywords

Navigation