Skip to main content
Log in

New species of Ophiostomatales from Scolytinae and Platypodinae beetles in the Cape Floristic Region, including the discovery of the sexual state of Raffaelea

  • Original Paper
  • Published:
Antonie van Leeuwenhoek Aims and scope Submit manuscript

Abstract

Olea capensis and Rapanea melanophloeos are important canopy trees in South African Afromontane forests. Dying or recently dead individuals of these trees are often infested by Scolytinae and Platypodinae (Curculionidae) beetles. Fungi were isolated from the surfaces of beetles emerging from wood samples and their galleries. Based on micro-morphological and phylogenetic analyses, four fungal species in the Ophiostomatales were isolated. These were Sporothrix pallida and three taxa here newly described as Sporothrix aemulophila sp. nov., Raffaelea vaginata sp. nov. and Raffaelea rapaneae sp. nov. This study represents the first collection of S. pallida, a species known from many environmental samples from across the world, from Scolytinae beetles. S. aemulophila sp. nov. is an associate of the ambrosia beetle Xyleborinus aemulus. R. rapaneae sp. nov. and R. vaginata sp. nov. were associated with a Lanurgus sp. and Platypodinae beetle, respectively, and represent the first Raffaelea spp. reported from the Cape Floristic Region. Of significance is that R. vaginata produced a sexual state analogous with those of Ophiostoma seticolle and O. deltoideosporum that also grouped in our analyses in Raffaelea s. str., to date considered an asexual genus. The morphology of the ossiform ascospores and anamorphs of the three species corresponded and the generic circumscription of Raffaelea is thus emended to accommodate sexual states. The two known species are provided with new combinations, namely Raffaelea seticollis (R.W. Davidson) Z.W. de Beer and T.A. Duong comb. nov. and Raffaelea deltoideospora (Olchow. and J. Reid) Z.W. de Beer and T.A. Duong comb. nov.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Akaike H (1974) A new look at the statistical model identification. IEEE Trans Autom Control 19:716–723

    Article  Google Scholar 

  • Alamouti SM, Tsui CKM, Breuil C (2009) Multigene phylogeny of filamentous ambrosia fungi associated with ambrosia and bark beetles. Mycol Res 113:822–835

    Article  CAS  Google Scholar 

  • Atkinson TH, Equihua A (1986) Source biology of the scolytidae and platypodidae (Coleoptera) in a tropical deciduous forest at Chamela, Jalisco, Mexico. Fla Entomol 69:303–310

    Article  Google Scholar 

  • Atkinson TH, Peck SB (1994) Annotated checklist of the bark and ambrosia beetles (Coleoptera: Platypodidae and Scolytidae) of tropical southern florida. Fla Entomol 77:313–329

    Article  Google Scholar 

  • Avtzis DN, Bertheau C, Stauffer C (2012) What is next in bark beetle hylogeography? Insects 3:453–472

    Article  Google Scholar 

  • Baker JM (1963) Ambrosia beetles and their fungi with particular reference to Platypus cylindrus Fab. In: Nutman PS, Mosse B (eds) Symbiotic associations, 13th symposium Society for General Microbiology. Cambridge University Press, Cambrage, pp 232–265

    Google Scholar 

  • Barras SJ, Perry TJ (1972) Fungal symbionts in the prothoracic mycangium of Dendrocfonus frontalis. Z Angew Entomol 7:95–104

    Google Scholar 

  • Batra LR (1966) Ambrosia fungi: extent of specificity to ambrosia beetles. Science 153:193–195

    Article  CAS  PubMed  Google Scholar 

  • Batra LR (1967) Ambrosia fungi: a taxonomic revision, and nutritional studies of some species. Mycologia 59:976–1017

    Article  Google Scholar 

  • Beaver AR (1989) Insect-fungus relationships in the bark and ambrosia beetles. In: Wilding N, Collins NM, Hammond PM, Webber JF (eds) Insect-fungus interactions. Academic Press, United Kingdom, pp 121–143

    Chapter  Google Scholar 

  • Beaver AR (2005) A remarkable new species of Cyclorhipidion hagedorn, and new records of bark and ambrosia beetles from Gabon (Coleoptera: Curculionidae, Scolytinae and Platypodinae). Entomol Mon Mag 141:113–119

    Google Scholar 

  • Beaver AR, Liu L-Y (2013) A synopsis of the pine-hole borers of Thailand (Coleoptera: Curculionidae: Platypodinae). Zootaxa 3646:447–486

    Article  CAS  PubMed  Google Scholar 

  • Berryman AA (1972) Resistance of conifers to invasion by bark beetle fungus associations. Bioscience 22:598–602

    Article  Google Scholar 

  • Biedermann PHW (2012) Evolution of cooperation in ambrosia beetles. Dissertation, University of Bern

  • Brasier CM (2000) Intercontinental spread and continuing evolution of the Dutch elm disease pathogens. In: Dunn CP (ed) The elms: breeding, conservation and disease management. Kluwer Academic Publishers, USA, pp 61–72

    Chapter  Google Scholar 

  • Brasier CM, Buck KW (2001) Rapid evolutionary changes in a globally invading fungal pathogen (Dutch elm disease). Biol Invasions 3:223–233

    Article  Google Scholar 

  • Breshears DD, Cobb NS, Rich PM, Price KP, Allen CD, Balice RG, Romme WH, Kastens JH, Floyd ML, Belnap J, Anderson JJ, Myers OB, Meyer CW (2005) Regional vegetation die-off in response to global-change-type drought. Proc Natl Acad Sci USA 102:15144–15148

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Bridges JR, Moser JC (1983) Role of two phoretic mites in transmission of bluestain fungus, Ceratocystis minor. Ecol Entomol 8:9–12

    Article  Google Scholar 

  • Browne FG (1968) Pests and diseases of forest plantation trees. Clarendon Press, Oxford

    Google Scholar 

  • Cassar S, Blackwell M (1996) Convergent origins of ambrosia fungi. Mycologia 88:596–601

    Article  Google Scholar 

  • Chen SF, Wingfield MJ, Roets F, Roux J (2013) A serious canker disease caused by Immersiporthe knoxdaviesiana gen. et sp. nov. (Cryphonectriaceae) on native Rapanea in South Africa. Plant Pathol 62:667–678

    Article  CAS  Google Scholar 

  • Davidison RW (1966) New species of Ceratocystis from conifers. Mycopath Mycol Appl 28:273–286

    Article  Google Scholar 

  • De Beer ZW, Wingfield MJ (2013) Emerging lineages in Ophiostomatales. In: Seifert KA, De Beer ZW and Wingfield MJ (eds) Ophiostomatoid fungi: expanding frontiers, CBS Biodiversity Series 12, pp 21–46

  • De Beer ZW, Seifert KA, Wingfield MJ (2013) A nomenclature for ophiostomatoid genera and species in the Ophiostomatales and Microascales. In: Seifert KA, De Beer ZW and Wingfield MJ (eds) Ophiostomatoid fungi: expanding frontiers, CBS Biodiversity Series 12, pp 245–322

  • De Fine Licht HH, Biedermann PHW (2012) Patterns of functional enzyme activity in fungus farming ambrosia beetles. Front Zool 9:13

    Article  PubMed Central  PubMed  Google Scholar 

  • De Meyer EM, De Beer ZW, Summerbell RC, Moharram AM, De Hoog GS, Vismer HF, Wingfield MJ (2008) Taxonomy and phylogeny of new wood- and soil-inhabiting Sporothrix species in the Ophiostoma stenoceras-Sporothrix schenckii complex. Mycologia 100:647–661

    Article  PubMed  Google Scholar 

  • Dreaden TJ, Davis JM, De Beer ZW, Ploetz RC, Soltis PS, Wingfield MJ, Smith JA (2014) Phylogeny of ambrosia beetle symbionts in the genus Raffaelea. Fungal Biol 118:970–978

    Article  PubMed  Google Scholar 

  • Duong TA, De Beer ZW, Wingfield BD, Wingfield MJ (2012) Phylogeny and taxonomy of species in the Grosmannia serpens complex. Mycologia 104:715–732

    Article  CAS  PubMed  Google Scholar 

  • Farrell BD, Sequeira AS, O’Meara BC, Normark BB, Chung JH, Jordal BH (2001) The evolution of agriculture in beetles (Curculionidae: Scolytinae and Platypodinae). Evolution 55:2011–2027

    Article  CAS  PubMed  Google Scholar 

  • Gardes M, Bruns TD (1993) ITS primers with enhanced specificity for basidiomycetes application to the identification of mycorrhizae and rusts. Mol Ecol 2:113–118

    Article  CAS  PubMed  Google Scholar 

  • Glass NL, Donaldson GC (1995) Development of primer sets designed for use with the PCR to amplify conserved genes from filamentous Ascomycetes. Appl Environ Microbiol 61:1323–1330

    PubMed Central  CAS  PubMed  Google Scholar 

  • Guerrero RT (1966) Una nueva especie de hongo inperfecto asociado con el coleoptero Platypus sulcatus Chapius. Revista de Investigciones Agropecuarias Series 3:97–103

    Google Scholar 

  • Guindon S, Gascuel O (2003) A simple, fast, and accurate algorithm to estimate large phylogenies by maximum likelihood. Syst Biol 52:696–704

    Article  PubMed  Google Scholar 

  • Hafez M, Majer A, Sethuraman J, Rudski SM, Michel F, Hausner G (2013) The mtDNA rns gene landscape in the Ophiostomatales and other fungal taxa: twintrons, introns, and intron-encoded proteins. Fungal Genet Biol 53:71–83

    Article  CAS  PubMed  Google Scholar 

  • Harrington TC (1981) Cycloheximide sensitivity as a taxonomic character in Ceratocystis. Mycologia 73:1123–1129

  • Harrington TC (1993) Biology and taxonomy of fungi associated with bark beetles. In: Schowalter TD, Filip GM (eds) Beetle-pathogen interactions in conifer forests. Academic Press, New York, pp 37–58

    Google Scholar 

  • Harrington TC (2005) Ecology and evolution of mycophagous bark beetles and their fungal partners. In: Vega FE, Blackwell M (eds) Insect-fungal associations: ecology and evolution. Oxford University Press, New York, pp 1–22

    Google Scholar 

  • Harrington TC, Fraedrich SW, Aghayeva DN (2008) Raffaelea lauricola, a new ambrosia beetle symbiont and pathogen on the Lauraceae. Mycotaxon 104:399–404

    Google Scholar 

  • Harrington TC, Aghayeva DN, Fraedrich SW (2010) New combinations in Raffaelea, Ambrosiella, and Hyalorhinocladiella, and four new species from the redbay ambrosia beetle, Xyleborus glabratus. Mycotaxon 111:337–361

    Article  Google Scholar 

  • Hausner G, Reid J (2003) Notes on Ceratocystis brunnea and some other Ophiostoma species based on partial ribosomal DNA sequence analysis. Can J Bot 81:865–876

    Article  CAS  Google Scholar 

  • Hausner G, Reid J, Klassen GR (1993) On the phylogeny of Ophiostoma, Ceratocystis s.s., and Microascus, and relationships within Ophiostoma based on partial ribosomal DNA sequences. Can J Botany 71:1249–1265

    Article  CAS  Google Scholar 

  • Hawksworth DL (2011) A new dawn for the naming of fungi: impacts of decisions made in Melbourne in July 2011 on the future publication and regulation of fungal names. MycoKeys 1:7–20

    Article  Google Scholar 

  • Hawksworth DL, Crous PW, Redhead SA et al (2011) The Amsterdam declaration on fungal nomenclature. IMA Fungus 2:105–112

    Article  PubMed Central  PubMed  Google Scholar 

  • Heybroek HM (1993) Why bother about the elm? In: Sticklen MB, Sherald JL (eds) Dutch elm disease research, cellular and molecular approaches. Springer-Verlag, New York, pp 1–8

    Chapter  Google Scholar 

  • Jacobs K, Wingfield MJ (2001) Leptographium species: tree pathogens, insect associates, and agents of blue-stain. APS press, St. Paul

    Google Scholar 

  • Jacobs K, Seifert KA, Harrison KJ, Kirisits T (2003) Identity and phylogenetic relationships of ophiostomatoid fungi associated with invasive and native Tetropium species (Coleoptera: Cerambycidae) in Atlantic Canada. Can J Botany 81:316–329

    Article  Google Scholar 

  • Jordal BH, Cognato AI (2012) Molecular phylogeny of bark and ambrosia beetles reveals multiple origins of fungus farming during periods of global warming. BMC Evol Biol 12:133

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Jordal BH, Beaver RA, Kirkendall LR (2001) Breaking taboos in the tropics: inbreeding promotes colonization by wood-boring beetles. Global Ecol Biogeogr 10:345–357

    Article  Google Scholar 

  • Kamgan Nkuekam G, Jacobs K, De Beer ZW, Wingfield MJ, Roux J (2008) Ceratocystis and Ophiostoma species including three new taxa, associated with wounds on native South African trees. Fungal Divers 29:37–59

    Google Scholar 

  • Kamgan Nkuekam G, De Beer ZW, Wingfield MJ, Roux J (2012) A diverse assemblage of Ophiostoma species, including two new taxa on eucalypt trees in South Africa. Mycol Progr 11:515–533

    Article  Google Scholar 

  • Katoh K, Toh H (2008) Recent developments in the MAFFT multiple sequence alignment program. Brief Bioinform 9:286–298

    Article  CAS  PubMed  Google Scholar 

  • Klepzig KD, Six DL (2004) Bark beetle-fungal symbiosis: context dependency in complex associations. Symbiosis 37:189–205

    Google Scholar 

  • Klepzig KD, Moser JC, Lombardero FJ, Hofstetter RW, Ayres MP (2001) Symbiosis and competition: complex interactions among beetles, fungi and mites. Symbiosis 30:83–96

    Google Scholar 

  • Knižek M, Beaver R (2004) Taxonomy and systematics of bark and ambrosia beetles. In: Lieutier F, Day KR, Battisti A, Grégoire J-C, Evans HF (eds) Bark and wood boring insects in living trees in Europe, a synthesis. Kluwer Academic Publishers, The Netherlands, pp 41–54

    Google Scholar 

  • Kubono T, Ito S (2002) Raffaelea quercivora sp. nov. associated with mass mortality of Japanese oak, and the ambrosia beetle (Platypus quercivorus). Mycoscience 43:255–260

    Article  Google Scholar 

  • Linnakoski R, De Beer ZW, Ahtiainen J, Sidorov E, Niemelä P, Pappinen A, Wingfield MJ (2010) Ophiostoma spp. associated with pine and spruce-infesting bark beetles in Finland and Russia. Persoonia 25:72–93

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Morrison AS, Lockhart SR, Bromley JG, Kim JY, Burd EM (2013) An environmental Sporothrix as a cause of corneal ulcer. Med Mycol Case Rep 2:88–90

    Article  PubMed Central  PubMed  Google Scholar 

  • Mullineux T, Hausner G (2009) Evolution of rDNA ITS1 and ITS2 sequences and RNA secondary structures within members of the fungal genera Grosmannia and Leptographium. Fungal Genet Biol 46:855–867

    Article  CAS  PubMed  Google Scholar 

  • O’Donnell K, Cigelnik E (1997) Two divergent intragenomic rDNA ITS2 types within a monophyletic lineage of the fungus Fusarium are nonorthologous. Mol Phylogenet Evol 7:103–116

  • Olchowecki A, Reid J (1974) Taxonomy of the genus Ceratocystis in Manitoba. Can J Bot 52:1675–1711

  • Paine TD, Raffa KF, Harrington TC (1997) Interactions among scolytid bark beetles, their associated fungi, and live host conifers. Annu Rev Entomol 42:179–206

    Article  CAS  PubMed  Google Scholar 

  • Pipe ND, Brasier CM, Buck KW (2000) Evolutionary relationships of the Dutch elm disease fungus Ophiostoma novo-ulmi to other Ophiostoma species investigated by restriction fragment length polymorphism analysis of the rDNA region. J Phytopathol 148:533–539

    Article  CAS  Google Scholar 

  • Ploetz RC, Hulcr J, Wingfield MJ, de Beer ZW (2013) Destructive tree diseases associated with ambrosia and bark beetles: black swan events in tree pathology? Plant Dis 97:856–872

    Article  Google Scholar 

  • Posada D (2008) Selection of models of DNA evolution with jModelTest. In: Posada D (ed) Bioinformatics for DNA sequence analysis. Humana Press, Totowa, pp 93–112

    Google Scholar 

  • Roets F, de Beer ZW, Dreyer LL, Crous PW, Zipfel R, Wingfield MJ (2006) Multigene phylogeny of Ophiostoma spp. associated with Protea infrutescenses including two new species. Stud Mycol 55:199–212

    Article  PubMed Central  PubMed  Google Scholar 

  • Roets F, Wingfield MJ, Crous PW, Dreyer LL (2007) Discovery of fungus-mite mutualism in a unique niche. Environ Entomol 36:1226–1237

    Article  CAS  PubMed  Google Scholar 

  • Roets F, Dreyer LL, Crous PW, Wingfield MJ (2009) Mite-mediated hyperphoretic dispersal of Ophiostoma spp. from the infructescences of South African Protea spp. Environ Entomol 38:143–152

    Article  CAS  PubMed  Google Scholar 

  • Romón P, De Beer ZW, Fernández M, Diez J, Wingfield BD, Wingfield MJ (2014a) Ophiostomatoid fungi including two new fungal species associated with pine root-feeding beetles in northern Spain. Anton Leeuw 106:1167–1184

    Article  Google Scholar 

  • Romón P, De Beer ZW, Zhou X, Duong TA, Wingfield BD, Wingfield MJ (2014b) Multigene phylogenies of Ophiostomataceae associated with Monterey pine bark beetles in Spain reveal three new fungal species. Mycologia 106:119–132

    Article  PubMed  Google Scholar 

  • Ronquist FR, Teslenko M, Van der Mark P, Ayres DL, Darling A, Höhna S, Larget B, Liu L, Suchard MA, Huelsenbeck JP (2012) MrBayes 3.2: efficient bayesian phylogenetic inference and model choice across a large model space. Syst Biol 61:539–542

    Article  PubMed Central  PubMed  Google Scholar 

  • Roux J, Malan R, Howitt M, Six DL, Wingfield MJ (2009) Fungi associated with diseased Euphorbia ingens in South Africa. In: 46th biannual conference of the Southern African Society for Plant Pathology, 25–28 Jan 2009, Gordons Bay, South Africa

  • Schedl KE (1972) Monographie der Famile Platypodidae (Coleoptera). W. Junk, The Hague, p 322

    Google Scholar 

  • Scott DB, Du Toit JW (1970) Three new Raffaelea species. Trans Br Mycol Soc 55:181–186

    Article  Google Scholar 

  • Six DL (2003) Bark beetle-fungus symbioses. In: Bourtzis K, Miller T (eds) Insect Symbioses. CRS press, Boca Raton, pp 97–114

    Chapter  Google Scholar 

  • Six DL (2012) Ecological and evolutionary determinants of bark beetle—fungus symbioses. Insects 3:339–366

    Article  Google Scholar 

  • Six DL, Wingfield MJ (2011) The role of phytopathogenicity in bark beetle–fungus symbioses: a challenge to the classic paradigm. Annu Rev Entomol 56:255–272

    Article  CAS  PubMed  Google Scholar 

  • Taerum SJ, Duong TA, De Beer ZW, Gillette N, Sun J-H, Owen DR, Wingfield MJ (2013) Large shift in symbiont assemblage in the invasive red turpentine beetle. PLoS One 8:e78126

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Upadhyay HP (1981) A monograph of Ceratocystis and Ceratocystiopsis. University of Georgia Press, Athens

    Google Scholar 

  • Van Der Linde JA, Roux J, Wingfield MJ, Six DL (2012) Die-off of giant Euphorbia trees in South Africa: symptoms and relationships to climate. S Afr J Bot 83:172–185

    Article  Google Scholar 

  • Van Wyk B, VanWyk P (1997) Field guide to trees of southern Africa. Struik Publishers, Cape Town

    Google Scholar 

  • Vilgalys R, Hester M (1990) Rapid genetic identification and mapping of enzymatically amplified ribosomal DNA from several Cryptococcus species. J Bacteriol 172:4238–4246

    PubMed Central  CAS  PubMed  Google Scholar 

  • Webber JF (1990) The relative effectiveness of Scolytus scolytus, S. multistriatus and S. kirschii as vectors of Dutch elm disease. Eur J For Pathol 20:184–192

    Article  Google Scholar 

  • White TJ, Bruns T, Lee S, Taylor J (1990) Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics. In: Innis MS, Gelfand DH, Sninsky JJ, White TJ (eds) PCR Protocols: A sequencing guide to methods and applications. Academic Press, San Diego, pp 315–322

    Google Scholar 

  • Whitney HS (1982) Relationships in bark beetles and symbiotic organisms. In: Mitton JB, Sturgeon KB (eds) Bark beetles in North America conifers. University of Texas, Austin, pp 183–211

    Google Scholar 

  • Wingfield MJ (1987) Fungi associated with the pine wood nematode, Bursaphelenchus xylophilus, and cerambycid beetles in Wisconsin. Mycologia 79:325–328

    Article  Google Scholar 

  • Wingfield MJ, Harrington TC, Solheim H (1995) Do conifer bark beetles require fungi to kill trees? In: Christiansen E (ed) Proceedings of bark beetles, blue-stain fungi, and conifer defense systems, Norwegian Forest Research Institute Symposium, Norway, p 6

  • Wood SL, Bright DE (1992) A catalog of Scolytidae and Platypodidae (Coleoptera), Part 2: taxonomic index. Great Basin Nat Mem 13:1–1553

    Google Scholar 

  • Zhou XD, De Beer ZW, Wingfield BD, Wingfield MJ (2001) Ophiostomatoid fungi associated with three pine-infesting bark beetles in South Africa. Sydowia 53:290–300

    Google Scholar 

  • Zhou XD, De Beer ZW, Cibrian D, Wingfield BD, Wingfield MJ (2004) Characterisation of Ophiostoma species associated with pine bark beetles from Mexico, including O. pulvinisporum sp. nov. Mycol Res 108:690–698

    Article  PubMed  Google Scholar 

  • Zhou XD, De Beer ZW, Wingfield MJ (2006) DNA sequence comparisons of Ophiostoma spp., including Ophiostoma aurorae sp. nov., associated with pine bark beetles in South Africa. Stud Mycol 55:269–277

    Article  PubMed Central  PubMed  Google Scholar 

  • Zipfel RD, De Beer ZW, Jacobs K, Wingfield BD, Wingfield MJ (2006) Multi-gene phylogenies define Ceratocystiopsis and Grosmannia distinct from Ophiostoma. Stud Mycol 55:75–97

    Article  PubMed Central  PubMed  Google Scholar 

Download references

Acknowledgments

The authors thank the DST/NRF Centre of Excellence in Tree Health Biotechnology (CHTB) for financial support and the South African National Parks Board (SANPARKS) and Western Cape Nature Conservation Board for issuing the necessary collecting permits. We are also grateful to Netsai Machingambi, PC Benade and Dewidine van der Colff for assistance with field work and Jane Forrester for permission to work on trees in the Harold Porter National Botanical Garden. Special thanks to Michail Mandelshtam for identification of the beetles collected in this study.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Francois Roets.

Ethics declarations

Conflict of interest

None.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 54 kb)

Supplementary material 2 (PPT 149 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Musvuugwa, T., de Beer, Z.W., Duong, T.A. et al. New species of Ophiostomatales from Scolytinae and Platypodinae beetles in the Cape Floristic Region, including the discovery of the sexual state of Raffaelea . Antonie van Leeuwenhoek 108, 933–950 (2015). https://doi.org/10.1007/s10482-015-0547-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10482-015-0547-7

Keywords

Navigation